scispace - formally typeset

Clathrate hydrate

About: Clathrate hydrate is a(n) research topic. Over the lifetime, 11846 publication(s) have been published within this topic receiving 307148 citation(s). The topic is also known as: gas clathrate & gas hydrate.
More filters

01 Jan 1990-
Abstract: PREFACE Overview and Historical Perspective Hydrates as a Laboratory Curiosity Hydrates in the Natural Gas Industry Hydrates as an Energy Resource Environmental Aspects of Hydrates Safety Aspects of Hydrates Relationship of This Chapter to Those That Follow Molecular Structures and Similarities to Ice Crystal Structures of Ice Ih and Natural Gas Hydrates Comparison of Properties of Hydrates and Ice The What and the How of Hydrate Structures Hydrate Formation and Dissociation Processes Hydrate Nucleation Hydrate Growth Hydrate Dissociation Estimation Techniques for Phase Equilibria of Natural Gas Hydrates Hydrate Phase Diagrams for Water + Hydrocarbon Systems Three-Phase (LW-H-V) Equilibrium Calculations Quadruple Points and Equilibrium of Three Condensed Phases (LW-H-LHC) Effect of Thermodynamic Inhibitors on Hydrate Formation Two-Phase Equilibrium: Hydrates with One Other Phase Hydrate Enthalpy and Hydration Number from Phase Equilibrium Summary and Relationship to Chapters Which Follow A Statistical Thermodynamic Approach to Hydrate Phase Equilibria Statistical Thermodynamics of Hydrate Equilibria Application of the Method to Analyze Systems of Methane + Ethane + Propane Computer Simulation: Another Microscopic-Macroscopic Bridge Summary Experimental Methods and Measurements of Hydrate Properties Experimental Apparatuses and Methods for Macroscopic Measurements Measurements of the Hydrate Phase Data for Natural Gas Hydrate Phase Equilibria and Thermal Properties Summary and Relationship to Chapters that Follow References Hydrates in the Earth The Paradigm Is Changing from Assessment of Amount to Production of Gas Sediments with Hydrates Typically Have Low Contents of Biogenic Methane Sediment Lithology and Fluid Flow Are Major Controls on Hydrate Deposition Remote Methods Enable an Estimation of the Extent of a Hydrated Reservoir Drilling Logs and/or Coring Provide Improved Assessments of Hydrated Gas Amounts Hydrate Reservoir Models Indicate Key Variables for Methane Production Future Hydrated Gas Production Trends Are from the Permafrost to the Ocean Hydrates Play a Part in Climate Change and Geohazards Summary Hydrates in Production, Processing, and Transportation How Do Hydrate Plugs Form in Industrial Equipment? How Are Hydrate Plug Formations Prevented? How Is a Hydrate Plug Dissociated? Safety and Hydrate Plug Removal Applications to Gas Transport and Storage Summary of Hydrates in Flow Assurance and Transportation APPENDICES INDEX

5,527 citations

Journal ArticleDOI
Abstract: Gas hydrates are naturally ocurring solids consisting of water molecules forming a lattice of cages, most of which contain a molecule of natural gas, usually methane. The present article discusses three important aspects of gas hydrates: their potential as a fossil fuel resource, their role as a submarine geohazard, and their effects on global climate change. 70 refs., 16 figs., 1 tab.

1,236 citations

Journal ArticleDOI
Alexei V. Milkov1
Abstract: It is generally assumed that oceanic gas hydrates contain a huge volume of natural gases, mainly methane. The most widely cited estimate of global hydrate-bound gas is 21×1015 m3 of methane at STP (or ∼10,000 Gt of methane carbon), which is proposed as a “consensus value” from several independent estimations. This large gas hydrate reservoir is further suggested as an important component of the global carbon cycle and as a future energy source. Here, I present a revised and updated set of well-justified global estimates and discuss how and why they changed over time. It appears that the global estimates of hydrate-bound gas decreased by at least one order of magnitude from 1970s–early 1980s (estimates on the order of 1017–1018 m3) to late 1980s–early 1990s (1016 m3) to late 1990s–present (1014–1015 m3). The decrease of estimates is a result of growing knowledge of the distribution and concentration of gas hydrates in marine sediments and ongoing efforts to better constrain the volume of hydrate-bearing sediments and their gas yield. These parameters appear to be relatively well constrained at present through DSDP/ODP drilling and direct measurements of gas concentrations in sediments. The global estimate of hydrate-bound gas that best reflects the current knowledge of submarine gas hydrate is in the range (1–5)×1015 m3 (∼500–2500 Gt of methane carbon). A significantly smaller global gas hydrate inventory implies that the role of gas hydrates in the global carbon cycle may not be as significant as speculated previously. Gas hydrate may be considered a future energy source not because the global volume of hydrate-bound gas is large, but because some individual gas hydrate accumulations may contain significant and concentrated resources that may be profitably recovered in the future.

864 citations

Journal ArticleDOI
Abstract: For the past three decades, discussion of naturally-occurring gas hydrates has been framed by a series of assessments that indicate enormous global volumes of methane present within gas hydrate accumulations. At present, these estimates continue to range over several orders of magnitude, creating great uncertainty in assessing those two gas hydrate issues that relate most directly to resource volumes – gas hydrate’s potential as an energy resource and its possible role in ongoing climate change. However, a series of recent field expeditions have provided new insights into the nature of gas hydrate occurrence; perhaps most notably, the understanding that gas hydrates occur in a wide variety of geologic settings and modes of occurrence. These fundamental differences - which include gas hydrate concentration, host lithology, distribution within the sediment matrix, burial depth, water depth, and many others - can now be incorporated into evaluations of gas hydrate energy resource and environmental issues. With regard to energy supply potential, field data combined with advanced numerical simulation have identified gas-hydrate-bearing sands as the most feasible initial targets for energy recovery. The first assessments of potential technically-recoverable resources are now occurring, enabling a preliminary estimate of ultimate global recoverable volumes on the order of ~3 × 1014 m3 (1016 ft3; ∼150 GtC). Other occurrences, such as gas hydrate-filled fractures in clay-dominated reservoirs, may also become potential energy production targets in the future; but as yet, no production concept has been demonstrated. With regard to the climate implications of gas hydrate, an analogous partitioning of global resources to determine that portion most prone to dissociation during specific future warming scenarios is needed. At present, it appears that these two portions of total gas hydrate resources (those that are the most likely targets for gas extraction and those that are the most likely to respond in a meaningful way to climate change) will be largely exclusive, as those deposits that are the most amenable to production (the more deeply buried and localized accumulations) are also those that are the most poorly coupled to oceanic and atmospheric conditions.

773 citations

Network Information
Related Topics (5)

34.8K papers, 802.6K citations

86% related

47.7K papers, 1.1M citations

86% related

27.6K papers, 458.5K citations

85% related

19K papers, 342.8K citations

85% related
Carbon dioxide clathrate

605 papers, 22.4K citations

82% related
No. of papers in the topic in previous years

Top Attributes

Show by:

Topic's top 5 most impactful authors

John A. Ripmeester

154 papers, 8.3K citations

Ryo Ohmura

136 papers, 3.6K citations

Timothy S. Collett

122 papers, 7.3K citations

Carolyn A. Koh

113 papers, 12.1K citations

Amadeu K. Sum

105 papers, 4.4K citations