scispace - formally typeset
Search or ask a question

Showing papers on "Climate change published in 2003"


Journal ArticleDOI
02 Jan 2003-Nature
TL;DR: A diagnostic fingerprint of temporal and spatial ‘sign-switching’ responses uniquely predicted by twentieth century climate trends is defined and generates ‘very high confidence’ (as laid down by the IPCC) that climate change is already affecting living systems.
Abstract: Causal attribution of recent biological trends to climate change is complicated because non-climatic influences dominate local, short-term biological changes. Any underlying signal from climate change is likely to be revealed by analyses that seek systematic trends across diverse species and geographic regions; however, debates within the Intergovernmental Panel on Climate Change (IPCC) reveal several definitions of a 'systematic trend'. Here, we explore these differences, apply diverse analyses to more than 1,700 species, and show that recent biological trends match climate change predictions. Global meta-analyses documented significant range shifts averaging 6.1 km per decade towards the poles (or metres per decade upward), and significant mean advancement of spring events by 2.3 days per decade. We define a diagnostic fingerprint of temporal and spatial 'sign-switching' responses uniquely predicted by twentieth century climate trends. Among appropriate long-term/large-scale/multi-species data sets, this diagnostic fingerprint was found for 279 species. This suite of analyses generates 'very high confidence' (as laid down by the IPCC) that climate change is already affecting living systems.

9,761 citations


Journal ArticleDOI
TL;DR: In this paper, a hierarchical modeling framework is proposed through which some of these limitations can be addressed within a broader, scale-dependent framework, and it is proposed that, although the complexity of the natural system presents fundamental limits to predictive modelling, the bioclimate envelope approach can provide a useful first approximation as to the potentially dramatic impact of climate change on biodiversity.
Abstract: Modelling strategies for predicting the potential impacts of climate change on the natural distribution of species have often focused on the characterization of a species’ bioclimate envelope. A number of recent critiques have questioned the validity of this approach by pointing to the many factors other than climate that play an important part in determining species distributions and the dynamics of distribution changes. Such factors include biotic interactions, evolutionary change and dispersal ability. This paper reviews and evaluates criticisms of bioclimate envelope models and discusses the implications of these criticisms for the different modelling strategies employed. It is proposed that, although the complexity of the natural system presents fundamental limits to predictive modelling, the bioclimate envelope approach can provide a useful first approximation as to the potentially dramatic impact of climate change on biodiversity. However, it is stressed that the spatial scale at which these models are applied is of fundamental importance, and that model results should not be interpreted without due consideration of the limitations involved. A hierarchical modelling framework is proposed through which some of these limitations can be addressed within a broader, scale-dependent

3,847 citations


Journal ArticleDOI
29 May 2003-Nature
TL;DR: The difference between trends in observed surface temperatures in the continental United States and the corresponding trends in a reconstruction of surface temperatures determined from a reanalysis of global weather over the past 50 years is used to estimate the impact of land-use changes on surface warming.
Abstract: The most important anthropogenic influences on climate are the emission of greenhouse gases1 and changes in land use, such as urbanization and agriculture2. But it has been difficult to separate these two influences because both tend to increase the daily mean surface temperature3,4. The impact of urbanization has been estimated by comparing observations in cities with those in surrounding rural areas, but the results differ significantly depending on whether population data5 or satellite measurements of night light6,7,8 are used to classify urban and rural areas7,8. Here we use the difference between trends in observed surface temperatures in the continental United States and the corresponding trends in a reconstruction of surface temperatures determined from a reanalysis of global weather over the past 50 years, which is insensitive to surface observations, to estimate the impact of land-use changes on surface warming. Our results suggest that half of the observed decrease in diurnal temperature range is due to urban and other land-use changes. Moreover, our estimate of 0.27 °C mean surface warming per century due to land-use changes is at least twice as high as previous estimates based on urbanization alone7,8.

2,018 citations


Journal ArticleDOI
05 Dec 2003-Science
TL;DR: It is clear that these changes will be increasingly manifested in important and tangible ways, such as changes in extremes of temperature and precipitation, decreases in seasonal and perennial snow and ice extent, and sea level rise.
Abstract: Modern climate change is dominated by human influences, which are now large enough to exceed the bounds of natural variability. The main source of global climate change is human-induced changes in atmospheric composition. These perturbations primarily result from emissions associated with energy use, but on local and regional scales, urbanization and land use changes are also important. Although there has been progress in monitoring and understanding climate change, there remain many scientific, technical, and institutional impediments to precisely planning for, adapting to, and mitigating the effects of climate change. There is still considerable uncertainty about the rates of change that can be expected, but it is clear that these changes will be increasingly manifested in important and tangible ways, such as changes in extremes of temperature and precipitation, decreases in seasonal and perennial snow and ice extent, and sea level rise. Anthropogenic climate change is now likely to continue for many centuries. We are venturing into the unknown with climate, and its associated impacts could be quite disruptive.

1,684 citations


Journal ArticleDOI
TL;DR: In this paper, the authors explore the nature of risk and vulnerabil-ity in the context of climate change and review the evidence on present-day adaptation in developing countries and on coordinated international action on future adaptation, arguing that all societies are fundamentally adaptive and there are many situations in the past where societies have adapted to changes in climate and to similar risks.
Abstract: The world' s climate is changing and will continue to change into the coming century at rates projected to be unprecedented in recent human history. The risks associated with these changes are real but highly uncertain. Societal vulnerability to the risks associated with climate change may exacerbate ongoing social and economic challenges, particularly for those parts of societies dependent on resources that are sensitive to changes in climate. Risks are apparent in agriculture, fisheries and many other components that constitute the livelihood of rural populations in developing countries. In this paper we explore the nature of risk and vulnerabil- ity in the context of climate change and review the evidence on present-day adaptation in developing countries and on coordinated international action on future adaptation. We argue that all societies are fundamentally adaptive and there are many situations in the past where societies have adapted to changes in climate and to similar risks. But some sectors are more sensitive and some groups in society more vulnerable to the risks posed by climate change than others. Yet all societies need to enhance their adaptive capacity to face both present and future climate change outside their experienced coping range. The challenges of climate change for development are in the present. Observed climate change, present-day climate variability and future expectations of change are changing the course of development strategies - development agencies and governments are now planning for this adaptation challenge. The primary challenge, therefore, posed at both the scale of local natural resource management and at the scale of international agreements and actions, is to promote adaptive capacity in the context of competing sustainable development objectives.

1,679 citations


Journal ArticleDOI
10 Jan 2003-Science
TL;DR: In the Pacific Ocean, air and ocean temperatures, atmospheric carbon dioxide, landings of anchovies and sardines, and the productivity of coastal and open ocean ecosystems have varied over periods of about 50 years.
Abstract: In the Pacific Ocean, air and ocean temperatures, atmospheric carbon dioxide, landings of anchovies and sardines, and the productivity of coastal and open ocean ecosystems have varied over periods of about 50 years. In the mid-1970s, the Pacific changed from a cool “anchovy regime” to a warm “sardine regime.” A shift back to an anchovy regime occurred in the middle to late 1990s. These large-scale, naturally occurring variations must be taken into account when considering human-induced climate change and the management of ocean living resources.

1,525 citations


Journal ArticleDOI
28 Mar 2003-Science
TL;DR: Policy-makers should consider expanding research into abrupt climate change, improving monitoring systems, and taking actions designed to enhance the adaptability and resilience of ecosystems and economies.
Abstract: Large, abrupt, and widespread climate changes with major impacts have occurred repeatedly in the past, when the Earth system was forced across thresholds. Although abrupt climate changes can occur for many reasons, it is conceivable that human forcing of climate change is increasing the probability of large, abrupt events. Were such an event to recur, the economic and ecological impacts could be large and potentially serious. Unpredictability exhibited near climate thresholds in simple models shows that some uncertainty will always be associated with projections. In light of these uncertainties, policy-makers should consider expanding research into abrupt climate change, improving monitoring systems, and taking actions designed to enhance the adaptability and resilience of ecosystems and economies.

1,218 citations


Journal ArticleDOI
TL;DR: In this paper, the authors discuss the significance of rapid regional (RRR) warming in one area, the Antarctic Peninsula, and discuss several possible candidate mechanisms: changing oceanographic or changing atmospheric circulation, or a regional air-sea-ice feedback amplifying greenhouse warming.
Abstract: The Intergovernmental Panel on Climate Change (IPCC) confirmed that mean global warming was 0.6 ± 0.2 °C during the 20th century and cited anthropogenic increases in greenhouse gases as the likely cause of temperature rise in the last 50 years. But this mean value conceals the substantial complexity of observed climate change, which is seasonally- and diurnally-biased, decadally-variable and geographically patchy. In particular, over the last 50 years three high-latitude areas have undergone recent rapid regional (RRR) warming, which was substantially more rapid than the global mean. However, each RRR warming occupies a different climatic regime and may have an entirely different underlying cause. We discuss the significance of RRR warming in one area, the Antarctic Peninsula. Here warming was much more rapid than in the rest of Antarctica where it was not significantly different to the global mean. We highlight climate proxies that appear to show that RRR warming on the Antarctic Peninsula is unprecedented over the last two millennia, and so unlikely to be a natural mode of variability. So while the station records do not indicate a ubiquitous polar amplification of global warming, the RRR warming on the Antarctic Peninsula might be a regional amplification of such warming. This, however, remains unproven since we cannot yet be sure what mechanism leads to such an amplification. We discuss several possible candidate mechanisms: changing oceanographic or changing atmospheric circulation, or a regional air-sea-ice feedback amplifying greenhouse warming. We can show that atmospheric warming and reduction in sea-ice duration coincide in a small area on the west of the Antarctic Peninsula, but here we cannot yet distinguish cause and effect. Thus for the present we cannot determine which process is the probable cause of RRR warming on the Antarctic Peninsula and until the mechanism initiating and sustaining the RRR warming is understood, and is convincingly reproduced in climate models, we lack a sound basis for predicting climate change in this region over the coming century.

1,158 citations


Journal ArticleDOI
TL;DR: In this paper, the magnitude, spatial distribution, and seasonality of the surface warming in the Arctic is examined and compared among the models, and it is found that the mean sea-ice state in the control (or present) climate is found to influence both the magnitude and spatial distribution of the high-latitude warming in models.
Abstract: The Northern Hemisphere polar amplification of climate change is documented in models taking part in the Coupled Model Intercomparison Project and in the new version of the Community Climate System Model. In particular, the magnitude, spatial distribution, and seasonality of the surface warming in the Arctic is examined and compared among the models. The range of simulated polar warming in the Arctic is from 1.5 to 4.5 times the global mean warming. While ice-albedo feedback is likely to account for much of the polar amplification, the strength of the feedback depends on numerous physical processes and parametrizations which differ considerably among the models. Nonetheless, the mean sea-ice state in the control (or present) climate is found to influence both the magnitude and spatial distribution of the high-latitude warming in the models. In particular, the latitude of the maximum warming is correlated inversely and significantly with sea-ice extent in the control climate. Additionally, models with relatively thin Arctic ice cover in the control climate tend to have higher polar amplification. An intercomparison of model results also shows that increases in poleward ocean heat transport at high latitudes and increases in polar cloud cover are significantly correlated to amplified Arctic warming. This suggests that these changes in the climate state may modify polar amplification. No significant correlation is found between polar amplification and the control climate continental ice and snow cover.

1,125 citations


Journal ArticleDOI
23 Jan 2003-Nature
TL;DR: A continuous record of centennial-scale monsoon variability throughout the Holocene from rapidly accumulating and minimally bioturbated sediments in the anoxic Arabian Sea is presented, suggesting that the link between North Atlantic climate and the Asian monsoon is a persistent aspect of global climate.
Abstract: During the last ice age, the Indian Ocean southwest monsoon exhibited abrupt changes that were closely correlated with millennial-scale climate events in the North Atlantic region1,2,3, suggesting a mechanistic link. In the Holocene epoch, which had a more stable climate, the amplitude of abrupt changes in North Atlantic climate was much smaller, and it has been unclear whether these changes are related to monsoon variability. Here we present a continuous record of centennial-scale monsoon variability throughout the Holocene from rapidly accumulating and minimally bioturbated sediments in the anoxic Arabian Sea. Our monsoon proxy record reveals several intervals of weak summer monsoon that coincide with cold periods documented in the North Atlantic region4—including the most recent climate changes from the Medieval Warm Period to the Little Ice Age and then to the present. We therefore suggest that the link between North Atlantic climate and the Asian monsoon is a persistent aspect of global climate.

1,055 citations


Journal ArticleDOI
28 Nov 2003
TL;DR: In this article, the authors describe the background behind the prevailing view on water vapor feedback and some of the arguments raised by its critics, and attempt to explain why these arguments have not modified the consensus within the climate research community.
Abstract: ■ Abstract Water vapor is the dominant greenhouse gas, the most important gaseous source of infrared opacity in the atmosphere. As the concentrations of other greenhouse gases, particularly carbon dioxide, increase because of human activity, it is centrally important to predict how the water vapor distribution will be affected. To the extent that water vapor concentrations increase in a warmer world, the climatic effects of the other greenhouse gases will be amplified. Models of the Earth’s climate indicate that this is an important positive feedback that increases the sensitivity of surface temperatures to carbon dioxide by nearly a factor of two when considered in isolation from other feedbacks, and possibly by as much as a factor of three or more when interactions with other feedbacks are considered. Critics of this consensus have attempted to provide reasons why modeling results are overestimating the strength of this feedback. Our uncertainty concerning climate sensitivity is disturbing. The range most often quoted for the equilibrium global mean surface temperature response to a doubling of CO2 concentrations in the atmosphere is 1.5C to 4.5C. If the Earth lies near the upper bound of this sensitivity range, climate changes in the twenty-first century will be profound. The range in sensitivity is primarily due to differing assumptions about how the Earth’s cloud distribution is maintained; all the models on which these estimates are based possess strong water vapor feedback. If this feedback is, in fact, substantially weaker than predicted in current models, sensitivities in the upper half of this range would be much less likely, a conclusion that would clearly have important policy implications. In this review, we describe the background behind the prevailing view on water vapor feedback and some of the arguments raised by its critics, and attempt to explain why these arguments have not modified the consensus within the climate research community.

Journal ArticleDOI
07 Nov 2003-Science
TL;DR: Regression estimates based on long-term rainfall data suggest that dust concentrations were sharply lower during much of the 20th century before 1970, when rainfall was more normal.
Abstract: Great quantities of African dust are carried over large areas of the Atlantic and to the Caribbean during much of the year. Measurements made from 1965 to 1998 in Barbados trade winds show large interannual changes that are highly anticorrelated with rainfall in the Soudano-Sahel, a region that has suffered varying degrees of drought since 1970. Regression estimates based on long-term rainfall data suggest that dust concentrations were sharply lower during much of the 20th century before 1970, when rainfall was more normal. Because of the great sensitivity of dust emissions to climate, future changes in climate could result in large changes in emissions from African and other arid regions that, in turn, could lead to impacts on climate over large areas.

Journal ArticleDOI
01 Apr 2003-Tellus B
TL;DR: In this paper, recent analyses of land-use change in the US and China, together with the latest estimates of tropical deforestation and afforestation from the FAO, were used to calculate a portion of the annual flux of carbon between terrestrial ecosystems and the atmosphere.
Abstract: Recent analyses of land-use change in the US and China, together with the latest estimates of tropical deforestation and afforestation from the FAO, were used to calculate a portion of the annual flux of carbon between terrestrial ecosystems and the atmosphere. The calculated flux includes only that portion of the flux resulting from direct human activity. In most regions, activities included the conversion of natural ecosystems to cultivated lands and pastures, including shifting cultivation, harvest of wood (for timber and fuel) and the establishment of tree plantations. In the US, woody encroachment and woodland thickening as a result of fire suppression were also included. The calculated flux of carbon does not include increases or decreases in carbon storage as a result of environmental changes (e.g., increasing concentrations of CO2, N deposition, climatic change or pollution). Globally, the long-term (1850‐2000) flux of carbon from changes in land use and management released 156 PgC to the atmosphere, about 60% of it from the tropics. Average annual fluxes during the 1980s and 1990s were 2.0 and 2.2 PgC yr −1 , respectively, dominated by releases of carbon from the tropics. Outside the tropics, the average net flux of carbon attributable to land-use change and management decreased from a source of 0.06 PgC yr −1 during the 1980s to a sink of 0.02 PgC yr −1 during the 1990s. According to the analyses summarized here, changes in land use were responsible for sinks in North America and Europe and for small sources in other non-tropical regions. The revisions were as large as 0.3 PgC yr −1 in individual regions but were largely offsetting, so that the global estimate for the 1980s was changed little from an earlier estimate. Uncertainties and recent improvements in the data used to calculate the flux of carbon from land-use change are reviewed, and the results are compared to other estimates of flux to evaluate the extent to which processes other than land-use change and management are important in explaining changes in terrestrial carbon storage.

Journal ArticleDOI
TL;DR: In this paper, the authors show the possible impacts on maize production in Africa and Latin America to 2055, using high-resolution methods to generate characteristic daily weather data for driving a detailed simulation model of the maize crop.
Abstract: The impacts of climate change on agriculture may add significantly to the development challenges of ensuring food security and reducing poverty. We show the possible impacts on maize production in Africa and Latin America to 2055, using high-resolution methods to generate characteristic daily weather data for driving a detailed simulation model of the maize crop. Although the results indicate an overall reduction of only 10% in maize production to 2055, equivalent to losses of $2 billion per year, the aggregate results hide enormous variability: areas can be identified where maize yields may change substantially. Climate change urgently needs to be assessed at the level of the household, so that poor and vulnerable people dependent on agriculture can be appropriately targetedin research andd evelopment activities whose object is poverty alleviation. r 2003 Elsevier Science Ltd. All rights reserved.

Journal ArticleDOI
17 Jul 2003-Nature
TL;DR: Fossil-coral oxygen isotopic records from Palmyra Island are splice together to provide 30–150-year windows of tropical Pacific climate variability within the last 1,100 years, implying that the majority of ENSO variability over the last millennium may have arisen from dynamics internal to the ENSo system itself.
Abstract: Any assessment of future climate change requires knowledge of the full range of natural variability in the El Nino/Southern Oscillation (ENSO) phenomenon. Here we splice together fossil-coral oxygen isotopic records from Palmyra Island in the tropical Pacific Ocean to provide 30–150-year windows of tropical Pacific climate variability within the last 1,100 years. The records indicate mean climate conditions in the central tropical Pacific ranging from relatively cool and dry during the tenth century to increasingly warmer and wetter climate in the twentieth century. But the corals also document a broad range of ENSO behaviour that correlates poorly with these estimates of mean climate. The most intense ENSO activity within the reconstruction occurred during the mid-seventeenth century. Taken together, the coral data imply that the majority of ENSO variability over the last millennium may have arisen from dynamics internal to the ENSO system itself.

Journal ArticleDOI
TL;DR: In this paper, the same attributes that result in an insect herbivore being termed a “pest” predispose it to disruption by climate change, particularly global warming.
Abstract: Forest insects and pathogens are the most pervasive and important agents of disturbance in North American forests, affecting an area almost 50 times larger than fire and with an economic impact nearly five times as great. The same attributes that result in an insect herbivore being termed a “pest” predispose it to disruption by climate change, particularly global warming. Although many pest species have co-evolved relationships with forest hosts that may or may not be harmful over the long term, the effects on these relationships may have disastrous consequences. We consider both the data and models necessary to evaluate the impacts of climate change, as well as the assessments that have been made to date. The results indicate that all aspects of insect outbreak behavior will intensify as the climate warms. This reinforces the need for more detailed monitoring and evaluations as climatic events unfold. Luckily, we are well placed to make rapid progress, using software tools, databases, and the models that are already available.

Journal ArticleDOI
TL;DR: In this article, a review summarizes recent research in Australia on: (i) climate and geophysical trends over the last few decades; (ii) projections for climate change in the 21st century; predicted impacts from modelling studies on particular ecosystems and native species; and (iv) ecological effects that have apparently occurred as a response to recent warming.
Abstract: This review summarizes recent research in Australia on: (i) climate and geophysical trends over the last few decades; (ii) projections for climate change in the 21st century; (iii) predicted impacts from modelling studies on particular ecosystems and native species; and (iv) ecological effects that have apparently occurred as a response to recent warming. Consistent with global trends, Australia has warmed ~ 0.8 � C over the last century with minimum temperatures warming faster than maxima. There have been significant regional trends in rainfall with the northern, eastern and southern parts of the continent receiving greater rainfall and the western region receiving less. Higher rainfall has been associated with an increase in the number of rain days and heavy rainfall events. Sea surface temperatures on the Great Barrier Reef have increased and are associated with an increase in the frequency and severity of coral bleaching and mortality. Sea level rises in Australia have been regionally variable, and considerably less than the global average. Snow cover and duration have declined significantly at some sites in the Snowy Mountains. CSIRO projections for future climatic changes indicate increases in annual average temperatures of 0.4-2.0 � C by 2030 (relative to 1990) and 1.0-6.0 � C by 2070. Considerable uncertainty remains as to future changes in rainfall, El Nino Southern Oscillation events and tropical cyclone activity. Overall increases in potential evaporation over much of the continent are predicted as well as continued reductions in the extent and duration of snow cover. Future changes in temperature and rainfall are predicted to have significant impacts on most vegetation types that have been modelled to date, although the interactive effect of continuing increases in atmospheric CO 2 has not been incorporated into most modelling studies. Elevated CO 2 will most likely mitigate some of the impacts of climate change by reducing water stress. Future impacts on particular ecosystems include increased forest growth, alterations in competitive regimes between C3 and C4 grasses, increasing encroachment of woody shrubs into arid and semiarid rangelands, continued incursion of mangrove communities into freshwater wetlands, increasing frequency of coral bleaching, and establishment of woody species at increasingly higher elevations in the alpine zone. Modelling of potential impacts on specific Australian taxa using bioclimatic analysis programs such as BIOCLIM consistently predicts contraction and/or fragmentation of species' current ranges. The bioclimates of some species of plants and vertebrates are predicted to disappear entirely with as little as 0.5-1.0 � C of warming. Australia lacks the long-term datasets and tradition of phenological monitoring that have allowed the detection of climate-change-related trends in the Northern Hemisphere. Long-term changes in Australian vegetation can be mostly attributed to alterations in fire regimes, clearing and grazing, but some trends, such as encroachment of rainforest into eucalypt woodlands, and establishment of trees in subalpine meadows probably have a climatic component. Shifts in species distributions toward the south (bats, birds), upward in elevation (alpine mammals) or along changing rainfall contours (birds, semiarid reptiles), have recently been documented and offer circumstantial evidence that temperature and rainfall trends are already affecting geographic ranges. Future research directions suggested include giving more emphasis to the study of climatic impacts and understanding the factors that control species distributions, incorporating the effects of elevated CO 2 into climatic modelling for vegetation and selecting suitable species as indicators of climate-induced change.

Journal ArticleDOI
TL;DR: A sharp threshold in habitat availability exists below which a species rapidly becomes extinct, and a similar threshold exists for the rate of climate change as has been observed for habitat loss—patch occupancy remains high up to a critical rate ofClimate change, beyond which species extinction becomes likely.
Abstract: Climate change and habitat destruction are two of the greatest threats to global biodiversity. Lattice models have been used to investigate how hypothetical species with different characteristics respond to habitat loss. The main result shows that a sharp threshold in habitat availability exists below which a species rapidly becomes extinct. Here, a similar modelling approach is taken to establish what determines how species respond to climate change. A similar threshold exists for the rate of climate change as has been observed for habitat loss-patch occupancy remains high up to a critical rate of climate change, beyond which species extinction becomes likely. Habitat specialists, especially those of relatively poor colonizing ability are least able to keep pace with climate change. The interaction between climate change and habitat loss might be disastrous. During climate change, the habitat threshold occurs sooner. Similarly, species suffer more from climate change in a fragmented habitat.

Journal ArticleDOI
24 Jul 2003-Nature
TL;DR: Extrapolations of the observed and inferred local extinction data imply that the current unprecedented rate of habitat destruction in Southeast Asia will result in the loss of 13–42% of regional populations over the next century, at least half of which will represent global species extinctions.
Abstract: The looming mass extinction of biodiversity in the humid tropics is a major concern for the future, yet most reports of extinctions in these regions are anecdotal or conjectural, with a scarcity of robust, broad-based empirical data. Here we report on local extinctions among a wide range of terrestrial and freshwater taxa from Singapore (540 km2) in relation to habitat loss exceeding 95% over 183 years. Substantial rates of documented and inferred extinctions were found, especially for forest specialists, with the greatest proportion of extinct taxa (34-87%) in butterflies, fish, birds and mammals. Observed extinctions were generally fewer, but inferred losses often higher, in vascular plants, phasmids, decapods, amphibians and reptiles (5-80%). Forest reserves comprising only 0.25% of Singapore's area now harbour over 50% of the residual native biodiversity. Extrapolations of the observed and inferred local extinction data, using a calibrated species-area model, imply that the current unprecedented rate of habitat destruction in Southeast Asia will result in the loss of 13-42% of regional populations over the next century, at least half of which will represent global species extinctions.

Journal ArticleDOI
04 Jul 2003-Science
TL;DR: A meta-analyses of global biological impacts of climate change and the level of confidence ascribed to the certainty that global climate change has caused the observed biological changes is presented.
Abstract: Recent reports have presented meta-analyses of global biological impacts of climate change ( [1][1], [2][2] ). However, there is debate as to the level of confidence ascribed to the certainty that global climate change has caused the observed biological changes ( [3][3] ). Two important

Journal ArticleDOI
14 Aug 2003-Nature
TL;DR: There is evidence that climate warming is diminishing productivity in Lake Tanganyika, East Africa, and the impact of regional effects of global climate change on aquatic ecosystem functions and services can be larger than that of local anthropogenic activity or overfishing.
Abstract: Although the effects of climate warming on the chemical and physical properties of lakes have been documented, biotic and ecosystem-scale responses to climate change have been only estimated or predicted by manipulations and models. Here we present evidence that climate warming is diminishing productivity in Lake Tanganyika, East Africa. This lake has historically supported a highly productive pelagic fishery that currently provides 25-40% of the animal protein supply for the populations of the surrounding countries. In parallel with regional warming patterns since the beginning of the twentieth century, a rise in surface-water temperature has increased the stability of the water column. A regional decrease in wind velocity has contributed to reduced mixing, decreasing deep-water nutrient upwelling and entrainment into surface waters. Carbon isotope records in sediment cores suggest that primary productivity may have decreased by about 20%, implying a roughly 30% decrease in fish yields. Our study provides evidence that the impact of regional effects of global climate change on aquatic ecosystem functions and services can be larger than that of local anthropogenic activity or overfishing.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the large-scale control on the climate of the South American Altiplano using local observations, reanalysis data and general circulation model experiments and found that the climatic conditions on the Altiplano are closely related to the upper-air circulation, with an easterly zonal flow aloft favoring wet conditions and westerly flow causing dry conditions.

Book
25 Nov 2003
TL;DR: Climate change and human health: risks and responses updates this work — and opens new pathways through which to exam-ine the consequences the future climate may hold for the ecological systems that underpin the authors' health.
Abstract: In 1996 a group of health researchers organized by WHO, the World Meteo-rological Organization (WMO), and the United Nations Environment Programme (UNEP) published the first comprehensive assessment of climate change and human health (1). Climate change and human health: risks and responses updates this work — and opens new pathways through which to exam-ine the consequences the future climate may hold for the ecological systems that underpin our health. As the rates of warming, CO

Journal ArticleDOI
TL;DR: In this paper, the authors examined the anthropogenically forced climate response over the historical period, 1860 to present, and projected response to 2100, using updated emissions scenarios and an improved coupled model (HadCM3) that does not use flux adjustments.
Abstract: In this study we examine the anthropogenically forced climate response over the historical period, 1860 to present, and projected response to 2100, using updated emissions scenarios and an improved coupled model (HadCM3) that does not use flux adjustments. We concentrate on four new Special Report on Emission Scenarios (SRES) namely (A1FI, A2, B2, B1) prepared for the Intergovernmental Panel on Climate Change Third Assessment Report, considered more self-consistent in their socio-economic and emissions structure, and therefore more policy relevant, than older scenarios like IS92a. We include an interactive model representation of the anthropogenic sulfur cycle and both direct and indirect forcings from sulfate aerosols, but omit the second indirect forcing effect through cloud lifetimes. The modelled first indirect forcing effect through cloud droplet size is near the centre of the IPCC uncertainty range. We also model variations in tropospheric and stratospheric ozone. Greenhouse gas-forced climate change response in B2 resembles patterns in IS92a but is smaller. Sulfate aerosol and ozone forcing substantially modulates the response, cooling the land, particularly northern mid-latitudes, and altering the monsoon structure. By 2100, global mean warming in SRES scenarios ranges from 2.6 to 5.3 K above 1900 and precipitation rises by 1%/K through the twenty first century (1.4%/K omitting aerosol changes). Large-scale patterns of response broadly resemble those in an earlier model (HadCM2), but with important regional differences, particularly in the tropics. Some divergence in future response occurs across scenarios for the regions considered, but marked drying in the mid-USA and southern Europe and significantly wetter conditions for South Asia, in June–July–August, are robust and significant.

Journal ArticleDOI
TL;DR: The Montreal Protocol is working as mentioned in this paper and ozone depletion is now decreasing, and the decline in total column amounts seen in the 1980s and 1990s at mid-latitudes has not continued.
Abstract: The Montreal Protocol is working. Concentrations of major ozone-depleting substances in the atmosphere are now decreasing, and the decline in total column amounts seen in the 1980s and 1990s at mid-latitudes has not continued. In polar regions, there is much greater natural variability. Each spring, large ozone holes continue to occur in Antarctica and less severe regions of depleted ozone continue to occur in the Arctic. There is evidence that some of these changes are driven by changes in atmospheric circulation rather than being solely attributable to reductions in ozone-depleting substances, which may indicate a linkage to climate change. Global ozone is still lower than in the 1970s and a return to that state is not expected for several decades. As changes in ozone impinge directly on UV radiation, elevated UV radiation due to reduced ozone is expected to continue over that period. Long-term changes in UV-B due to ozone depletion are difficult to verify through direct measurement, but there is strong evidence that UV-B irradiance increased over the period of ozone depletion. At unpolluted sites in the southern hemisphere, there is some evidence that UV-B irradiance has diminished since the late 1990s. The availability and temporal extent of UV data have improved, and we are now able to evaluate the changes in recent times compared with those estimated since the late 1920s, when ozone measurements first became available. The increases in UV-B irradiance over the latter part of the 20th century have been larger than the natural variability. There is increased evidence that aerosols have a larger effect on surface UV-B radiation than previously thought. At some sites in the Northern Hemisphere, UV-B irradiance may continue to increase because of continuing reductions in aerosol extinctions since the 1990s. Interactions between ozone depletion and climate change are complex and can be mediated through changes in chemistry, radiation, and atmospheric circulation patterns. The changes can be in both directions: ozone changes can affect climate, and climate change can affect ozone. The observational evidence suggests that stratospheric ozone (and therefore UV-B) has responded relatively quickly to changes in ozone-depleting substances, implying that climate interactions have not delayed this process. Model calculations predict that at mid-latitudes a return of ozone to pre-1980 levels is expected by the mid 21st century. However, it may take a decade or two longer in polar regions. Climate change can also affect UV radiation through changes in cloudiness and albedo, without involving ozone and since temperature changes over the 21st century are likely to be about 5 times greater than in the past century. This is likely to have significant effects on future cloud, aerosol and surface reflectivity. Consequently, unless strong mitigation measures are undertaken with respect to climate change, profound effects on the biosphere and on the solar UV radiation received at the Earth's surface can be anticipated. The future remains uncertain. Ozone is expected to increase slowly over the decades ahead, but it is not known whether ozone will return to higher levels, or lower levels, than those present prior to the onset of ozone depletion in the 1970s. There is even greater uncertainty about future UV radiation, since it will be additionally influenced by changes in aerosols and clouds.

Journal ArticleDOI
Dawen Yang1, Shinjiro Kanae1, Taikan Oki1, Toshio Koike1, Katumi Musiake1 
TL;DR: In this paper, a GIS-based RUSLE model is employed to study the global soil erosion potential for viewing the present situation, analysing changes over the past century, and projecting future trends with reference to global changes in land use and climate.
Abstract: A GIS-based RUSLE model is employed to study the global soil erosion potential for viewing the present situation, analysing changes over the past century, and projecting future trends with reference to global changes in land use and climate. Scenarios considered in the study include historical, present and future conditions of cropland and climate. This research gives the first overview of the global situation of soil erosion potential considering the previous century as well as the present and future. Present soil erosion potential is estimated to be about 0·38 mm year−1 for the globe, with Southeast Asia found to be the most seriously affected region in the world. It is estimated that nearly 60% of present soil erosions are induced by human activity. With development of cropland in the last century, soil erosion potential is estimated to have increased by about 17%. Global warming might significantly increase the potential for soil erosion, and the regions with the same increasing trend of precipitation and population might face much more serious problems related to soil erosion in the future. Copyright © 2003 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: Based on research to date, some expectations about terrestrial ecosystem response as several elements of global climate change develop in coming decades are state.
Abstract: Based on research to date, we can state some expectations about terrestrial ecosystem response as several elements of global climate change develop in coming decades. Higher plant species will vary considerably in their response to elevated UV-B radiation, but the most common general effects are reductions in height of plants, decreased shoot mass if ozone reduction is severe, increased quantities of some phenolics in plant tissues and, perhaps, reductions in foliage area. In some cases, the common growth responses may be lessened by increasing CO2 concentrations. However, changes in chemistry of plant tissues will generally not be reversed by elevated CO2. Among other things, changes in plant tissue chemistry induced by enhanced UV-B may reduce consumption of plant tissues by insects and other herbivores, although occasionally consumption may be increased. Pathogen attack on plants may be increased or decreased as a consequence of elevated UV-B, in combination with other climatic changes. This may be affected both by alterations in plant chemistry and direct damage to some pathogens. Water limitation may decrease the sensitivity of some agricultural plants to UV-B, but for vegetation in other habitats, this may not apply. With global warming, the repair of some types of UV damage may be improved, but several other interactions between warming and enhanced UV-B may occur. For example, even though warming may lead to fewer killing frosts, with enhanced UV-B and elevated CO2 levels, some plant species may have increased sensitivity to frost damage.

Journal ArticleDOI
TL;DR: It seems reasonable to assume that agroecosystem responses will be dominated by those caused directly or indirectly by shifts in climate, associated with altered weather patterns, and not by elevated CO2 per se.

Journal ArticleDOI
10 Oct 2003-Science
TL;DR: The results provide evidence that anthropogenic emissions of ozonedepleting gases have had a distinct impact on climate not only at stratospheric levels but at Earth's surface as well.
Abstract: Recent observations indicate that climate change over the high latitudes of the Southern Hemisphere is dominated by a strengthening of the circumpolar westerly flow that extends from the surface to the stratosphere. Here we demonstrate that the seasonality, structure, and amplitude of the observed climate trends are simulated in a state-of-the-art atmospheric model run with high vertical resolution that is forced solely by prescribed stratospheric ozone depletion. The results provide evidence that anthropogenic emissions of ozonedepleting gases have had a distinct impact on climate not only at stratospheric levels but at Earth's surface as well.