scispace - formally typeset
Search or ask a question

Showing papers on "Climate change published in 2013"


Book ChapterDOI
01 Jan 2013
TL;DR: The Intergovernmental Panel on Climate Change (IPCC) as mentioned in this paper has become a key framework for the exchange of scientific dialogue on climate change within the scientific community as well as across the science and policy arenas.
Abstract: The Intergovernmental Panel on Climate Change (IPCC) is perceived as the leading international body for the assessment of climate change. In the 23 years since its founding, it has become a key framework for the exchange of scientific dialogue on climate change within the scientific community as well as across the science and policy arenas. This article provides an introduction to the IPCC (its establishment, structure, procedures, and publications) and briefly discusses the solutions proposed by the IPCC in the face of recent criticism and media scrutiny. The philosophical framework of the science/policy interface in which the IPCC functions is presented. Finally, this article concludes with a presentation of the challenges facing the IPCC in the ongoing preparation of its 5th assessment report including exploration of the entire solutions space, ensuring a comparable set of scenarios across IPCC working groups and a consistent treatment of uncertainty.

4,080 citations


Book
01 Jan 2013
TL;DR: In this paper, the authors present an overview of global and regional climate projections and their relevance for future regional climate change, as well as a discussion of the impact of climate change on the future.
Abstract: Foreword Preface Summary for policy makers Technical summary 1. Introduction 2. Observations: atmosphere and surface 3. Observations: ocean 4. Observations: cryosphere 5. Information from paleoclimate archives 6. Carbon and other biogeochemical cycles 7. Clouds and aerosols 8. Anthropogenic and natural radiative forcing 9. Evaluation of climate models 10. Detection and attribution of climate change: from global to regional 11. Near-term climate change: projections and predictability 12. Long-term climate change: projections, commitments and irreversibility 13. Sea level change 14. Climate phenomena and their relevance for future regional climate change Annex I. Atlas of global and regional climate projections Annex II. Climate system scenario tables Annex III. Glossary Annex IV. Acronyms Annex V. Contributors Annex VI. Expert reviewers Index.

2,729 citations


Book Chapter
01 Jan 2013
TL;DR: The authors assesses long-term projections of climate change for the end of the 21st century and beyond, where the forced signal depends on the scenario and is typically larger than the internal variability of the climate system.
Abstract: This chapter assesses long-term projections of climate change for the end of the 21st century and beyond, where the forced signal depends on the scenario and is typically larger than the internal variability of the climate system. Changes are expressed with respect to a baseline period of 1986-2005, unless otherwise stated.

2,253 citations


Journal ArticleDOI
02 Aug 2013-Science
TL;DR: The evidence supports the need for considerable investment in adaptation and mitigation actions toward a “climate-smart food system” that is more resilient to climate change influences on food security.
Abstract: Climate change could potentially interrupt progress toward a world without hunger. A robust and coherent global pattern is discernible of the impacts of climate change on crop productivity that could have consequences for food availability. The stability of whole food systems may be at risk under climate change because of short-term variability in supply. However, the potential impact is less clear at regional scales, but it is likely that climate variability and change will exacerbate food insecurity in areas currently vulnerable to hunger and undernutrition. Likewise, it can be anticipated that food access and utilization will be affected indirectly via collateral effects on household and individual incomes, and food utilization could be impaired by loss of access to drinking water and damage to health. The evidence supports the need for considerable investment in adaptation and mitigation actions toward a “climate-smart food system” that is more resilient to climate change influences on food security.

2,050 citations


Journal ArticleDOI
TL;DR: This article used several climate models to estimate the global risk of flooding at the end of the century and showed that vulnerability is dependent on the degree of warming and the interannual variability in precipitation.
Abstract: Flood risk is expected to increase as the climate warms. This study, for the first time, uses several climate models to estimate the global risk of flooding at the end of the century. Projections show a large increase in flood frequency in some areas, whereas other regions can expect a decrease. Vulnerability is dependent on the degree of warming and the interannual variability in precipitation.

1,812 citations


Book
01 Jan 2013
TL;DR: In this paper, the authors provide a unique global assessment of the magnitude, the sources and pathways of emissions from different livestock production systems and supply chains and also provide estimates of the sector's mitigation potential and identifies concrete options to reduce emissions.
Abstract: As renewed international efforts are needed to curb greenhouse gas emissions, the livestock sector can contribute its part. An important emitter of greenhouse gas, it also has the potential to significantly reduce its emissions. This report provides a unique global assessment of the magnitude, the sources and pathways of emissions from different livestock production systems and supply chains. Relying on life cycle assessment, statistical analysis and scenario building, it also provides estimates of the sector’s mitigation potential and identifies concrete options to reduce emissions. The report is a useful resource for stakeholders from livestock producers to policy-makers, researchers and civil society representatives, which also intends to inform the public debate on the role of livestock supply chains in climate change and possible solution.

1,786 citations


01 Jan 2013
TL;DR: The authors assesses long-term projections of climate change for the end of the 21st century and beyond, where the forced signal depends on the scenario and is typically larger than the internal variability of the climate system.
Abstract: This chapter assesses long-term projections of climate change for the end of the 21st century and beyond, where the forced signal depends on the scenario and is typically larger than the internal variability of the climate system. Changes are expressed with respect to a baseline period of 1986–2005, unless otherwise stated.

1,719 citations


Book ChapterDOI
01 Nov 2013
TL;DR: In this article, an overview of model capabilities as assessed in this chapter, including improvements, or lack thereof, relative to models assessed in the AR4, is presented, along with an assessment of recent work connecting model performance to the detection and attribution of climate change as well as to future projections.
Abstract: Climate models have continued to be developed and improved since the AR4, and many models have been extended into Earth System models by including the representation of biogeochemical cycles important to climate change. These models allow for policy-relevant calculations such as the carbon dioxide (CO2) emissions compatible with a specified climate stabilization target. In addition, the range of climate variables and processes that have been evaluated has greatly expanded, and differences between models and observations are increasingly quantified using ‘performance metrics’. In this chapter, model evaluation covers simulation of the mean climate, of historical climate change, of variability on multiple time scales and of regional modes of variability. This evaluation is based on recent internationally coordinated model experiments, including simulations of historic and paleo climate, specialized experiments designed to provide insight into key climate processes and feedbacks and regional climate downscaling. Figure 9.44 provides an overview of model capabilities as assessed in this chapter, including improvements, or lack thereof, relative to models assessed in the AR4. The chapter concludes with an assessment of recent work connecting model performance to the detection and attribution of climate change as well as to future projections.

1,686 citations


Journal ArticleDOI
TL;DR: In this article, the authors derived a forest drought-stress index (FDSI) for the southwestern United States using a comprehensive tree-ring data set representing AD 1000-2007, which is approximately equally influenced by the warm-season vapour-pressure deficit (largely controlled by temperature) and cold-season precipitation, together explaining 82% of the FDSI variability.
Abstract: As the climate changes, drought may reduce tree productivity and survival across many forest ecosystems; however, the relative influence of specific climate parameters on forest decline is poorly understood. We derive a forest drought-stress index (FDSI) for the southwestern United States using a comprehensive tree-ring data set representing AD 1000–2007. The FDSI is approximately equally influenced by the warm-season vapour-pressure deficit (largely controlled by temperature) and cold-season precipitation, together explaining 82% of the FDSI variability. Correspondence between the FDSI and measures of forest productivity, mortality, bark-beetle outbreak and wildfire validate the FDSI as a holistic forest-vigour indicator. If the vapour-pressure deficit continues increasing as projected by climate models, the mean forest drought-stress by the 2050s will exceed that of the most severe droughts in the past 1,000 years. Collectively, the results foreshadow twenty-first-century changes in forest structures and compositions, with transition of forests in the southwestern United States, and perhaps water-limited forests globally, towards distributions unfamiliar to modern civilization. As the global climate changes, drought is expected to reduce productivity and tree survival across many forests; however, the relative influence of climate variables on forest decline remains poorly understood. A drought-stress index based on tree-ring data—newly developed for the southwestern United States—is found to be equally influenced by evaporation (primarily temperature driven) and precipitation and may serve as a holistic forest-vigour indicator in water-limited forests.

1,562 citations


Journal ArticleDOI
TL;DR: In this paper, the authors critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system, and highlight the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies.
Abstract: As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

1,536 citations


Journal ArticleDOI
TL;DR: This article presented the global general circulation model IPSL-CM5 developed to study the long-term response of the climate system to natural and anthropogenic forcings as part of the 5th Phase of the Coupled Model Intercomparison Project (CMIP5).
Abstract: We present the global general circulation model IPSL-CM5 developed to study the long-term response of the climate system to natural and anthropogenic forcings as part of the 5th Phase of the Coupled Model Intercomparison Project (CMIP5). This model includes an interactive carbon cycle, a representation of tropospheric and stratospheric chemistry, and a comprehensive representation of aerosols. As it represents the principal dynamical, physical, and bio-geochemical processes relevant to the climate system, it may be referred to as an Earth System Model. However, the IPSL-CM5 model may be used in a multitude of configurations associated with different boundary conditions and with a range of complexities in terms of processes and interactions. This paper presents an overview of the different model components and explains how they were coupled and used to simulate historical climate changes over the past 150 years and different scenarios of future climate change. A single version of the IPSL-CM5 model (IPSL-CM5A-LR) was used to provide climate projections associated with different socio-economic scenarios, including the different Representative Concentration Pathways considered by CMIP5 and several scenarios from the Special Report on Emission Scenarios considered by CMIP3. Results suggest that the magnitude of global warming projections primarily depends on the socio-economic scenario considered, that there is potential for an aggressive mitigation policy to limit global warming to about two degrees, and that the behavior of some components of the climate system such as the Arctic sea ice and the Atlantic Meridional Overturning Circulation may change drastically by the end of the twenty-first century in the case of a no climate policy scenario. Although the magnitude of regional temperature and precipitation changes depends fairly linearly on the magnitude of the projected global warming (and thus on the scenario considered), the geographical pattern of these changes is strikingly similar for the different scenarios. The representation of atmospheric physical processes in the model is shown to strongly influence the simulated climate variability and both the magnitude and pattern of the projected climate changes.

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the environmental drivers of phenology, and the impacts of climate change on phenology in different biomes, and assess the potential impact on these feedbacks of shifts in phenology driven by climate change.

Journal ArticleDOI
TL;DR: This article synthesized all available studies of the consistency of marine ecological observations with expectations under climate change This yielded a meta-database of 1,735 marine biological responses for which either regional or global climate change was considered as a driver.
Abstract: Research that combines all available studies of biological responses to regional and global climate change shows that 81–83% of all observations were consistent with the expected impacts of climate change These findings were replicated across taxa and oceanic basins Past meta-analyses of the response of marine organisms to climate change have examined a limited range of locations1,2, taxonomic groups2,3,4 and/or biological responses5,6 This has precluded a robust overview of the effect of climate change in the global ocean Here, we synthesized all available studies of the consistency of marine ecological observations with expectations under climate change This yielded a meta-database of 1,735 marine biological responses for which either regional or global climate change was considered as a driver Included were instances of marine taxa responding as expected, in a manner inconsistent with expectations, and taxa demonstrating no response From this database, 81–83% of all observations for distribution, phenology, community composition, abundance, demography and calcification across taxa and ocean basins were consistent with the expected impacts of climate change Of the species responding to climate change, rates of distribution shifts were, on average, consistent with those required to track ocean surface temperature changes Conversely, we did not find a relationship between regional shifts in spring phenology and the seasonality of temperature Rates of observed shifts in species’ distributions and phenology are comparable to, or greater, than those for terrestrial systems

Journal ArticleDOI
TL;DR: In this article, the authors compare projections from the latest models with those from earlier versions and find that the spread of results has not changed significantly, and some of the spread will always remain due to the internal variability of the climate system.
Abstract: Updated models are being used for the new assessment report from the Intergovernmental Panel on Climate Change. This study compares projections from the latest models with those from earlier versions. The spread of results has not changed significantly, and some of the spread will always remain due to the internal variability of the climate system. As models improve, they are able to represent more processes in greater detail, allowing for greater confidence in their projections, in spite of model spread.

Journal ArticleDOI
TL;DR: In this article, the Max-Planck-Institute Earth System Model (MPI-ESM) is used in the Coupled Model Intercomparison Project phase 5 (CMIP5) in a series of climate change experiments for either idealized CO2-only forcing or forcings based on observations and the Representative Concentration Pathway (RCP) scenarios.
Abstract: [1] The new Max-Planck-Institute Earth System Model (MPI-ESM) is used in the Coupled Model Intercomparison Project phase 5 (CMIP5) in a series of climate change experiments for either idealized CO2-only forcing or forcings based on observations and the Representative Concentration Pathway (RCP) scenarios. The paper gives an overview of the model configurations, experiments related forcings, and initialization procedures and presents results for the simulated changes in climate and carbon cycle. It is found that the climate feedback depends on the global warming and possibly the forcing history. The global warming from climatological 1850 conditions to 2080–2100 ranges from 1.5°C under the RCP2.6 scenario to 4.4°C under the RCP8.5 scenario. Over this range, the patterns of temperature and precipitation change are nearly independent of the global warming. The model shows a tendency to reduce the ocean heat uptake efficiency toward a warmer climate, and hence acceleration in warming in the later years. The precipitation sensitivity can be as high as 2.5% K−1 if the CO2 concentration is constant, or as small as 1.6% K−1, if the CO2 concentration is increasing. The oceanic uptake of anthropogenic carbon increases over time in all scenarios, being smallest in the experiment forced by RCP2.6 and largest in that for RCP8.5. The land also serves as a net carbon sink in all scenarios, predominantly in boreal regions. The strong tropical carbon sources found in the RCP2.6 and RCP8.5 experiments are almost absent in the RCP4.5 experiment, which can be explained by reforestation in the RCP4.5 scenario.


Journal ArticleDOI
15 Aug 2013-Nature
TL;DR: The mechanisms and impacts of climate extremes on the terrestrial carbon cycle are explored, and a pathway to improve the understanding of present and future impacts ofClimate extremes onThe terrestrial carbon budget is proposed.
Abstract: The terrestrial biosphere is a key component of the global carbon cycle and its carbon balance is strongly influenced by climate. Continuing environmental changes are thought to increase global terrestrial carbon uptake. But evidence is mounting that climate extremes such as droughts or storms can lead to a decrease in regional ecosystem carbon stocks and therefore have the potential to negate an expected increase in terrestrial carbon uptake. Here we explore the mechanisms and impacts of climate extremes on the terrestrial carbon cycle, and propose a pathway to improve our understanding of present and future impacts of climate extremes on the terrestrial carbon budget.

Journal ArticleDOI
08 Mar 2013-Science
TL;DR: Recon reconstructions of the past 1500 years suggest that recent warming is unprecedented in that time, and regional and global temperature anomalies for the past 11,300 years from 73 globally distributed records are provided.
Abstract: Surface temperature reconstructions of the past 1500 years suggest that recent warming is unprecedented in that time. Here we provide a broader perspective by reconstructing regional and global temperature anomalies for the past 11,300 years from 73 globally distributed records. Early Holocene (10,000 to 5000 years ago) warmth is followed by ~0.7°C cooling through the middle to late Holocene (<5000 years ago), culminating in the coolest temperatures of the Holocene during the Little Ice Age, about 200 years ago. This cooling is largely associated with ~2°C change in the North Atlantic. Current global temperatures of the past decade have not yet exceeded peak interglacial values but are warmer than during ~75% of the Holocene temperature history. Intergovernmental Panel on Climate Change model projections for 2100 exceed the full distribution of Holocene temperature under all plausible greenhouse gas emission scenarios.

Journal ArticleDOI
TL;DR: There is a differential effect of climate change both in terms of geographic location and the crops that will likely show the most extreme reductions in yield as a result of expected extreme fluctuations in temperature and global warming in general.
Abstract: Global warming is predicted to have a general negative effect on plant growth due to the damaging effect of high temperatures on plant development. The increasing threat of climatological extremes including very high temperatures might lead to catastrophic loss of crop productivity and result in wide spread famine. In this review, we assess the impact of global climate change on the agricultural crop production. There is a differential effect of climate change both in terms of geographic location and the crops that will likely show the most extreme reductions in yield as a result of expected extreme fluctuations in temperature and global warming in general. High temperature stress has a wide range of effects on plants in terms of physiology, biochemistry and gene regulation pathways. However, strategies exist to crop improvement for heat stress tolerance. In this review, we present recent advances of research on all these levels of investigation and focus on potential leads that may help to understand more fully the mechanisms that make plants tolerant or susceptible to heat stress. Finally, we review possible procedures and methods which could lead to the generation of new varieties with sustainable yield production, in a world likely to be challenged both by increasing population, higher average temperatures and larger temperature fluctuations.

Journal ArticleDOI
TL;DR: In this article, the potential benefits of conservation, restoration and use of marine vegetated habitats for coastal protection and climate change mitigation are assessed, and the potential benefit of using these habitats in eco-engineering solutions for coast protection is discussed.
Abstract: Marine vegetated habitats occupy a small fraction of the ocean surface, but contribute about 50% of the carbon that is buried in marine sediments. In this Review the potential benefits of conservation, restoration and use of these habitats for coastal protection and climate change mitigation are assessed. Marine vegetated habitats (seagrasses, salt-marshes, macroalgae and mangroves) occupy 0.2% of the ocean surface, but contribute 50% of carbon burial in marine sediments. Their canopies dissipate wave energy and high burial rates raise the seafloor, buffering the impacts of rising sea level and wave action that are associated with climate change. The loss of a third of the global cover of these ecosystems involves a loss of CO2 sinks and the emission of 1 Pg CO2 annually. The conservation, restoration and use of vegetated coastal habitats in eco-engineering solutions for coastal protection provide a promising strategy, delivering significant capacity for climate change mitigation and adaption.

Journal ArticleDOI
TL;DR: This paper provided an overview of projected changes in climate extremes indices defined by the Expert Team on Climate Change Detection and Indices (ETCCDI) over the 21st century relative to the reference period 1981-2000.
Abstract: [1] This study provides an overview of projected changes in climate extremes indices defined by the Expert Team on Climate Change Detection and Indices (ETCCDI). The temperature- and precipitation-based indices are computed with a consistent methodology for climate change simulations using different emission scenarios in the Coupled Model Intercomparison Project Phase 3 (CMIP3) and Phase 5 (CMIP5) multimodel ensembles. We analyze changes in the indices on global and regional scales over the 21st century relative to the reference period 1981–2000. In general, changes in indices based on daily minimum temperatures are found to be more pronounced than in indices based on daily maximum temperatures. Extreme precipitation generally increases faster than total wet-day precipitation. In regions, such as Australia, Central America, South Africa, and the Mediterranean, increases in consecutive dry days coincide with decreases in heavy precipitation days and maximum consecutive 5 day precipitation, which indicates future intensification of dry conditions. Particularly for the precipitation-based indices, there can be a wide disagreement about the sign of change between the models in some regions. Changes in temperature and precipitation indices are most pronounced under RCP8.5, with projected changes exceeding those discussed in previous studies based on SRES scenarios. The complete set of indices is made available via the ETCCDI indices archive to encourage further studies on the various aspects of changes in extremes.

Journal ArticleDOI
TL;DR: ECHAM6, the sixth generation of the atmospheric general circulation model ECHAM, is described in this article, which represents the present climate as well as, or better than, its predecessor.
Abstract: [1] ECHAM6, the sixth generation of the atmospheric general circulation model ECHAM, is described. Major changes with respect to its predecessor affect the representation of shortwave radiative transfer, the height of the model top. Minor changes have been made to model tuning and convective triggering. Several model configurations, differing in horizontal and vertical resolution, are compared. As horizontal resolution is increased beyond T63, the simulated climate improves but changes are incremental; major biases appear to be limited by the parameterization of small-scale physical processes, such as clouds and convection. Higher vertical resolution in the middle atmosphere leads to a systematic reduction in temperature biases in the upper troposphere, and a better representation of the middle atmosphere and its modes of variability. ECHAM6 represents the present climate as well as, or better than, its predecessor. The most marked improvements are evident in the circulation of the extratropics. ECHAM6 continues to have a good representation of tropical variability. A number of biases, however, remain. These include a poor representation of low-level clouds, systematic shifts in major precipitation features, biases in the partitioning of precipitation between land and sea (particularly in the tropics), and midlatitude jets that appear to be insufficiently poleward. The response of ECHAM6 to increasing concentrations of greenhouse gases is similar to that of ECHAM5. The equilibrium climate sensitivity of the mixed-resolution (T63L95) configuration is between 2.9 and 3.4 K and is somewhat larger for the 47 level model. Cloud feedbacks and adjustments contribute positively to warming from increasing greenhouse gases.

Journal ArticleDOI
TL;DR: This article reviewed the connection between these two issues and concluded that limits to availability of fossil fuels will set a limit for mankind's ability to affect the climate, however, this limit is unclear as various studies have reached quite different conclusions regarding future atmospheric CO2 concentrations caused by fossil fuel limitations.

Journal ArticleDOI
TL;DR: In this article, the authors present the largest standardized model intercomparison for climate change impacts so far, finding that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient.
Abstract: Projections of climate change impacts on crop yields are inherently uncertain(1). Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate(2). However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models(1,3) are difficult(4). Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development and policymaking.

Journal ArticleDOI
TL;DR: In this article, the authors analyzed important new research from across the social sciences and found that climate change threatens important cultural dimensions of people's lives and livelihoods, including material and lived aspects of culture, identity, community cohesion and sense of place.
Abstract: Society's response to climate change is inevitably mediated by culture. In a Review Article that analyses important new research from across the social sciences, climate change is shown to threaten important cultural dimensions of people's lives and livelihoods — including material and lived aspects of culture, identity, community cohesion and sense of place.

Journal ArticleDOI
TL;DR: In this article, the authors used climate, water, economic, and remote sensing data combined with biophysical modeling to understand the drivers of the "Millennium Drought" and its impacts.
Abstract: [1] The “Millennium Drought” (2001–2009) can be described as the worst drought on record for southeast Australia. Adaptation to future severe droughts requires insight into the drivers of the drought and its impacts. These were analyzed using climate, water, economic, and remote sensing data combined with biophysical modeling. Prevailing El Nino conditions explained about two thirds of rainfall deficit in east Australia. Results for south Australia were inconclusive; a contribution from global climate change remains plausible but unproven. Natural processes changed the timing and magnitude of soil moisture, streamflow, and groundwater deficits by up to several years, and caused the amplification of rainfall declines in streamflow to be greater than in normal dry years. By design, river management avoided impacts on some categories of water users, but did so by exacerbating the impacts on annual irrigation agriculture and, in particular, river ecosystems. Relative rainfall reductions were amplified 1.5–1.7 times in dryland wheat yields, but the impact was offset by steady increases in cropping area and crop water use efficiency (perhaps partly due to CO2 fertilization). Impacts beyond the agricultural sector occurred (e.g., forestry, tourism, utilities) but were often diffuse and not well quantified. Key causative pathways from physical drought to the degradation of ecological, economic, and social health remain poorly understood and quantified. Combined with the multiple dimensions of multiyear droughts and the specter of climate change, this means future droughts may well break records in ever new ways and not necessarily be managed better than past ones.

Journal ArticleDOI
13 Sep 2013-Science
TL;DR: Using nearly 50 years of coastal survey data on >350 marine taxa, Pinsky et al. found that climate velocity was a much better predictor of patterns of change than individual species' characteristics or life histories.
Abstract: Organisms are expected to adapt or move in response to climate change, but observed distribution shifts span a wide range of directions and rates. Explanations often emphasize biological distinctions among species, but general mechanisms have been elusive. We tested an alternative hypothesis: that differences in climate velocity—the rate and direction that climate shifts across the landscape—can explain observed species shifts. We compiled a database of coastal surveys around North America from 1968 to 2011, sampling 128 million individuals across 360 marine taxa. Climate velocity explained the magnitude and direction of shifts in latitude and depth much more effectively than did species characteristics. Our results demonstrate that marine species shift at different rates and directions because they closely track the complex mosaic of local climate velocities.


Journal ArticleDOI
02 Aug 2013-Science
TL;DR: This review highlights research progress and gaps that have emerged during the past decade and develops a predictive framework that integrates knowledge from ecophysiology and community ecology with modeling approaches to mitigate the impacts of climate-driven disease emergence.
Abstract: Scientists have long predicted large-scale responses of infectious diseases to climate change, giving rise to a polarizing debate, especially concerning human pathogens for which socioeconomic drivers and control measures can limit the detection of climate-mediated changes. Climate change has already increased the occurrence of diseases in some natural and agricultural systems, but in many cases, outcomes depend on the form of climate change and details of the host-pathogen system. In this review, we highlight research progress and gaps that have emerged during the past decade and develop a predictive framework that integrates knowledge from ecophysiology and community ecology with modeling approaches. Future work must continue to anticipate and monitor pathogen biodiversity and disease trends in natural ecosystems and identify opportunities to mitigate the impacts of climate-driven disease emergence.

Journal ArticleDOI
TL;DR: In this paper, the authors argue for an approach that goes beyond an institutional reading of urban climate governance to engage with the ways in which government is accomplished through social and technical practices.
Abstract: In this paper, we argue for an approach that goes beyond an institutional reading of urban climate governance to engage with the ways in which government is accomplished through social and technical practices. Central to the exercise of government in this manner, we argue, are ‘climate change experiments’– purposive interventions in urban socio-technical systems designed to respond to the imperatives of mitigating and adapting to climate change in the city. Drawing on three different concepts – of governance experiments, socio-technical experiments, and strategic experiments – we first develop a framework for understanding the nature and dynamics of urban climate change experiments. We use this conceptual analysis to frame a scoping study of the global dimensions of urban climate change experimentation in a database of 627 urban climate change experiments in 100 global cities. The analysis charts when and where these experiments occur, the relationship between the social and technical aspects of experimentation and the governance of urban climate change experimentation, including the actors involved in their governing and the extent to which new political spaces for experimentation are emerging in the contemporary city. We find that experiments serve to create new forms of political space within the city, as public and private authority blur, and are primarily enacted through forms of technical intervention in infrastructure networks, drawing attention to the importance of such sites in urban climate politics. These findings point to an emerging research agenda on urban climate change experiments that needs to engage with the diversity of experimentation in different urban contexts, how they are conducted in practice and their impacts and implications for urban governance and urban life.