scispace - formally typeset
Search or ask a question

Showing papers on "Climate change published in 2015"


01 Jan 2015
TL;DR: The work of the IPCC Working Group III 5th Assessment report as mentioned in this paper is a comprehensive, objective and policy neutral assessment of the current scientific knowledge on mitigating climate change, which has been extensively reviewed by experts and governments to ensure quality and comprehensiveness.
Abstract: The talk with present the key results of the IPCC Working Group III 5th assessment report. Concluding four years of intense scientific collaboration by hundreds of authors from around the world, the report responds to the request of the world's governments for a comprehensive, objective and policy neutral assessment of the current scientific knowledge on mitigating climate change. The report has been extensively reviewed by experts and governments to ensure quality and comprehensiveness.

3,224 citations


Journal ArticleDOI
09 Apr 2015-Nature
TL;DR: In this paper, the authors find that current evidence suggests a gradual and prolonged release of greenhouse gas emissions in a warming climate and present a research strategy with which to target poorly understood aspects of permafrost carbon dynamics.
Abstract: Large quantities of organic carbon are stored in frozen soils (permafrost) within Arctic and sub-Arctic regions. A warming climate can induce environmental changes that accelerate the microbial breakdown of organic carbon and the release of the greenhouse gases carbon dioxide and methane. This feedback can accelerate climate change, but the magnitude and timing of greenhouse gas emission from these regions and their impact on climate change remain uncertain. Here we find that current evidence suggests a gradual and prolonged release of greenhouse gas emissions in a warming climate and present a research strategy with which to target poorly understood aspects of permafrost carbon dynamics.

2,282 citations


Journal ArticleDOI
TL;DR: The Community Earth System Model (CESM) community designed the CESM Large Ensemble with the explicit goal of enabling assessment of climate change in the presence of internal climate variability as discussed by the authors.
Abstract: While internal climate variability is known to affect climate projections, its influence is often underappreciated and confused with model error. Why? In general, modeling centers contribute a small number of realizations to international climate model assessments [e.g., phase 5 of the Coupled Model Intercomparison Project (CMIP5)]. As a result, model error and internal climate variability are difficult, and at times impossible, to disentangle. In response, the Community Earth System Model (CESM) community designed the CESM Large Ensemble (CESM-LE) with the explicit goal of enabling assessment of climate change in the presence of internal climate variability. All CESM-LE simulations use a single CMIP5 model (CESM with the Community Atmosphere Model, version 5). The core simulations replay the twenty to twenty-first century (1920–2100) 30 times under historical and representative concentration pathway 8.5 external forcing with small initial condition differences. Two companion 1000+-yr-long preindu...

1,869 citations


Journal ArticleDOI
01 May 2015-Science
TL;DR: Estimating a global mean extinction rate was synthesized in order to determine which factors contribute the greatest uncertainty to climate change–induced extinction risks and suggest that extinction risks will accelerate with future global temperatures.
Abstract: Current predictions of extinction risks from climate change vary widely depending on the specific assumptions and geographic and taxonomic focus of each study. I synthesized published studies in order to estimate a global mean extinction rate and determine which factors contribute the greatest uncertainty to climate change–induced extinction risks. Results suggest that extinction risks will accelerate with future global temperatures, threatening up to one in six species under current policies. Extinction risks were highest in South America, Australia, and New Zealand, and risks did not vary by taxonomic group. Realistic assumptions about extinction debt and dispersal capacity substantially increased extinction risks. We urgently need to adopt strategies that limit further climate change if we are to avoid an acceleration of global extinctions.

1,472 citations


Book ChapterDOI
01 Jan 2015
Abstract: Recognizing the problem of a potential global climate change, the World Meteorological Organization ( WMO) and the United Nations Environment Programme ( UNEP) established the Intergovernmental Panel on Climate Change, IPCC, in 1988. The role of the IPCC is to assess the scientific, technical and socio-economic information relevant for the understanding of the risk of human-induced change. It does not carry out research nor does it monitor climate-related data or other relevant parameters. It bases its assessment mainly on peer-reviewed and published scientific and technical literature. The IPCC has three Working Groups and a Task Force: ♦ Working Group I assesses the scientific aspects of the climate system and climate change. ♦ Working Group II addresses the vulnerability of socio-economic and natural systems to climate change, the negative and positive consequences of climate change, and options for adapting to it. ♦ Working Group III assesses options for limiting greenhouse-gas emissions and otherwise mitigating climate change. ♦ The Task Force on National Greenhouse Gas Inventories is responsible for the IPCC National Greenhouse Gas Inventories Programme. The IPCC completed its First Assessment Report in 1990. The Report played an important role in the establishing of the Intergovernmental Negotiating Committee for a UN Framework Convention on Climate Change by the UN General Assembly. The Convention was adopted in Rio de Janeiro in 1992. The Second Assessment Report, Climate Change 1995, provided key input to the negotiations that led to the adoption of the Kyoto Protocol in 1997. The Third Assessment Report ( TAR) was adopted in September 2001. Some 2000 scientists representing a variety of disciplines the world over took part in this assessment, and the results were further reviewed both from the political and scientific aspect by representatives of the participating countries. This is the most all-embracing assessment of research that has ever been made. A Fourth Assessment Report is scheduled to be ready by 2007. The IPCC also prepares Special Reports and Technical Papers on topics where independent scientific information and advice is deemed necessary (see Publications, p.14). It also supports the climate convention through its work on methodologies for National Greenhouse Gas Inventories. The Intergovernmental Panel on Climate Change, IPCC

1,329 citations


Journal ArticleDOI
12 Nov 2015-Nature
TL;DR: Overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures, which provides the first evidence that economic activity in all regions is coupled to the global climate.
Abstract: Economic productivity is shown to peak at an annual average temperature of 13 °C and decline at high temperatures, indicating that climate change is expected to lower global incomes more than 20% by 2100. Temperature, and therefore climate change, can affect a country's economic productivity, but it has not been clear if rich and poor countries, or different aspects of economic productivity, show similar relationships. These authors use economic data from 166 countries for the years 1960 to 2010 to uncover a universal nonlinear relationship that reconciles earlier results. Economic productivity peaks at an annual average temperature of 13 °C, and the authors explore the likelihood of global economic contraction under future warming scenarios. Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies1,2, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries3,4. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature5, while poor countries respond only linearly5,6. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human–natural systems7,8 and to anticipating the global impact of climate change9,10. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change11,12, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.

1,320 citations



Journal ArticleDOI
TL;DR: This study uses detailed crop statistics time series for ~13,500 political units to examine how recent climate variability led to variations in maize, rice, wheat and soybean crop yields worldwide.
Abstract: Many studies have examined the role of mean climate change in agriculture, but an understanding of the influence of inter-annual climate variations on crop yields in different regions remains elusive. We use detailed crop statistics time series for ~13,500 political units to examine how recent climate variability led to variations in maize, rice, wheat and soybean crop yields worldwide. While some areas show no significant influence of climate variability, in substantial areas of the global breadbaskets, >60% of the yield variability can be explained by climate variability. Globally, climate variability accounts for roughly a third (~32-39%) of the observed yield variability. Our study uniquely illustrates spatial patterns in the relationship between climate variability and crop yield variability, highlighting where variations in temperature, precipitation or their interaction explain yield variability. We discuss key drivers for the observed variations to target further research and policy interventions geared towards buffering future crop production from climate variability.

1,168 citations


Journal ArticleDOI
TL;DR: This article used three daily global climate data sets and three fire danger indices to develop a simple annual metric of fire weather season length, and map spatio-temporal trends from 1979 to 2013.
Abstract: Climate strongly influences global wildfire activity, and recent wildfire surges may signal fire weather-induced pyrogeographic shifts. Here we use three daily global climate data sets and three fire danger indices to develop a simple annual metric of fire weather season length, and map spatio-temporal trends from 1979 to 2013. We show that fire weather seasons have lengthened across 29.6 million km 2 (25.3%) of the Earth’s vegetated surface, resulting in an 18.7% increase in global mean fire weather season length. We also show a doubling (108.1% increase) of global burnable area affected by long fire weather seasons (41.0 s above the historical mean) and an increased global frequency of long fire weather seasons across 62.4 million km 2 (53.4%) during the second half of the study period. If these fire weather changes are coupled with ignition sources and available fuel, they could markedly impact global ecosystems, societies, economies and climate.

1,106 citations


Journal ArticleDOI
TL;DR: An empirical drought reconstruction and three soil moisture metrics from 17 state-of-the-art general circulation models are used to show that these models project significantly drier conditions in the later half of the 21st century compared to the 20th century and earlier paleoclimatic intervals.
Abstract: In the Southwest and Central Plains of Western North America, climate change is expected to increase drought severity in the coming decades. These regions nevertheless experienced extended Medieval-era droughts that were more persistent than any historical event, providing crucial targets in the paleoclimate record for benchmarking the severity of future drought risks. We use an empirical drought reconstruction and three soil moisture metrics from 17 state-of-the-art general circulation models to show that these models project significantly drier conditions in the later half of the 21st century compared to the 20th century and earlier paleoclimatic intervals. This desiccation is consistent across most of the models and moisture balance variables, indicating a coherent and robust drying response to warming despite the diversity of models and metrics analyzed. Notably, future drought risk will likely exceed even the driest centuries of the Medieval Climate Anomaly (1100–1300 CE) in both moderate (RCP 4.5) and high (RCP 8.5) future emissions scenarios, leading to unprecedented drought conditions during the last millennium.

1,098 citations


Journal ArticleDOI
TL;DR: This work calculates and map recent change over 5 years in cumulative impacts to marine ecosystems globally from fishing, climate change, and ocean- and land-based stressors and affirm the importance of addressing climate change to maintain and improve the condition of marine ecosystems.
Abstract: Human pressures on the ocean are thought to be increasing globally, yet we know little about their patterns of cumulative change, which pressures are most responsible for change, and which places are experiencing the greatest increases. Managers and policymakers require such information to make strategic decisions and monitor progress towards management objectives. Here we calculate and map recent change over 5 years in cumulative impacts to marine ecosystems globally from fishing, climate change, and ocean- and land-based stressors. Nearly 66% of the ocean and 77% of national jurisdictions show increased human impact, driven mostly by climate change pressures. Five percent of the ocean is heavily impacted with increasing pressures, requiring management attention. Ten percent has very low impact with decreasing pressures. Our results provide large-scale guidance about where to prioritize management efforts and affirm the importance of addressing climate change to maintain and improve the condition of marine ecosystems.

Journal ArticleDOI
TL;DR: The contribution of human-induced climate change to global heavy precipitation and hot extreme events is quantified in this paper, where the authors show that of the moderate extremes, 18% of precipitation and 75% of high-temperature events are attributable to warming.
Abstract: The contribution of human-induced climate change to global heavy precipitation and hot extreme events is quantified. The results show that of the moderate extremes, 18% of precipitation and 75% of high-temperature events are attributable to warming.

Journal ArticleDOI
22 Oct 2015-Nature
TL;DR: Biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity toClimate events.
Abstract: It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide1. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities2. However, subsequent experimental tests produced mixed results3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16–32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability14, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.

Journal ArticleDOI
TL;DR: In this paper, a new retrospective satellite-based precipitation dataset is constructed as a climate data record for hydrological and climate studies, which addresses the need for a consistent, long-term, high-resolution, and global precipitation dataset for studying the changes and trends in daily precipitation, especially extreme precipitation events, due to climate change and natural variability.
Abstract: A new retrospective satellite-based precipitation dataset is constructed as a climate data record for hydrological and climate studies. Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks–Climate Data Record (PERSIANN-CDR) provides daily and 0.25° rainfall estimates for the latitude band 60°S–60°N for the period of 1 January 1983 to 31 December 2012 (delayed present). PERSIANN-CDR is aimed at addressing the need for a consistent, long-term, high-resolution, and global precipitation dataset for studying the changes and trends in daily precipitation, especially extreme precipitation events, due to climate change and natural variability. PERSIANN-CDR is generated from the PERSIANN algorithm using GridSat-B1 infrared data. It is adjusted using the Global Precipitation Climatology Project (GPCP) monthly product to maintain consistency of the two datasets at 2.5° monthly scale throughout the entire record. Three case studies for testing the efficacy of the dataset ...

Journal ArticleDOI
TL;DR: In this paper, a review examines current understanding of the processes regulating tropospheric ozone at global to local scales from both measurements and models and takes the view that knowledge across the scales is important for dealing with air quality and climate change in a synergistic manner.
Abstract: Ozone holds a certain fascination in atmospheric science. It is ubiquitous in the atmosphere, central to tropospheric oxidation chemistry, yet harmful to human and ecosystem health as well as being an important greenhouse gas. It is not emitted into the atmosphere but is a by-product of the very oxidation chemistry it largely initiates. Much effort is focussed on the reduction of surface levels of ozone owing to its health impacts but recent efforts to achieve reductions in exposure at a country scale have proved difficult to achieve due to increases in background ozone at the zonal hemispheric scale. There is also a growing realisation that the role of ozone as a short-lived climate pollutant could be important in integrated air quality climate-change mitigation. This review examines current understanding of the processes regulating tropospheric ozone at global to local scales from both measurements and models. It takes the view that knowledge across the scales is important for dealing with air quality and climate change in a synergistic manner.


01 Dec 2015
TL;DR: The authors used an empirical drought reconstruction and three soil moisture metrics from 17 state-of-the-art general circulation models to show that these models project significantly drier conditions in the later half of the 21st century compared to the 20th century and earlier paleoclimatic intervals, indicating a coherent and robust drying response to warming despite the diversity of models and metrics analyzed.
Abstract: In the Southwest and Central Plains of Western North America, climate change is expected to increase drought severity in the coming decades. These regions nevertheless experienced extended Medieval-era droughts that were more persistent than any historical event, providing crucial targets in the paleoclimate record for benchmarking the severity of future drought risks. We use an empirical drought reconstruction and three soil moisture metrics from 17 state-of-the-art general circulation models to show that these models project significantly drier conditions in the later half of the 21st century compared to the 20th century and earlier paleoclimatic intervals. This desiccation is consistent across most of the models and moisture balance variables, indicating a coherent and robust drying response to warming despite the diversity of models and metrics analyzed. Notably, future drought risk will likely exceed even the driest centuries of the Medieval Climate Anomaly (1100–1300 CE) in both moderate (RCP 4.5) and high (RCP 8.5) future emissions scenarios, leading to unprecedented drought conditions during the last millennium.

Journal ArticleDOI
TL;DR: In the first worldwide synthesis of in situ and satellite-derived lake data, this paper found that lake summer surface water temperatures rose rapidly (global mean = 0.34°C decade−1) between 1985 and 2009.
Abstract: In this first worldwide synthesis of in situ and satellite-derived lake data, we find that lake summer surface water temperatures rose rapidly (global mean = 0.34°C decade−1) between 1985 and 2009. Our analyses show that surface water warming rates are dependent on combinations of climate and local characteristics, rather than just lake location, leading to the counterintuitive result that regional consistency in lake warming is the exception, rather than the rule. The most rapidly warming lakes are widely geographically distributed, and their warming is associated with interactions among different climatic factors—from seasonally ice-covered lakes in areas where temperature and solar radiation are increasing while cloud cover is diminishing (0.72°C decade−1) to ice-free lakes experiencing increases in air temperature and solar radiation (0.53°C decade−1). The pervasive and rapid warming observed here signals the urgent need to incorporate climate impacts into vulnerability assessments and adaptation efforts for lakes.

Journal ArticleDOI
TL;DR: In this article, three main approaches used to derive these currencies (correlative, mechanistic and trait-based) and their associated data requirements, spatial and temporal scales of application and modelling methods are described.
Abstract: The effects of climate change on biodiversity are increasingly well documented, and many methods have been developed to assess species' vulnerability to climatic changes, both ongoing and projected in the coming decades. To minimize global biodiversity losses, conservationists need to identify those species that are likely to be most vulnerable to the impacts of climate change. In this Review, we summarize different currencies used for assessing species' climate change vulnerability. We describe three main approaches used to derive these currencies (correlative, mechanistic and trait-based), and their associated data requirements, spatial and temporal scales of application and modelling methods. We identify strengths and weaknesses of the approaches and highlight the sources of uncertainty inherent in each method that limit projection reliability. Finally, we provide guidance for conservation practitioners in selecting the most appropriate approach(es) for their planning needs and highlight priority areas for further assessments.

Journal ArticleDOI
31 Jul 2015-Science
TL;DR: P pervasive and substantial “legacy effects” of reduced growth and incomplete recovery for 1 to 4 years after severe drought were found, most prevalent in dry ecosystems, among Pinaceae, and among species with low hydraulic safety margins.
Abstract: The impacts of climate extremes on terrestrial ecosystems are poorly understood but important for predicting carbon cycle feedbacks to climate change. Coupled climate-carbon cycle models typically assume that vegetation recovery from extreme drought is immediate and complete, which conflicts with the understanding of basic plant physiology. We examined the recovery of stem growth in trees after severe drought at 1338 forest sites across the globe, comprising 49,339 site-years, and compared the results with simulated recovery in climate-vegetation models. We found pervasive and substantial "legacy effects" of reduced growth and incomplete recovery for 1 to 4 years after severe drought. Legacy effects were most prevalent in dry ecosystems, among Pinaceae, and among species with low hydraulic safety margins. In contrast, limited or no legacy effects after drought were simulated by current climate-vegetation models. Our results highlight hysteresis in ecosystem-level carbon cycling and delayed recovery from climate extremes.

Journal ArticleDOI
TL;DR: A survey of 119 countries showed that education is the strongest predictor of climate change awareness around the world as mentioned in this paper, which suggests that improving understanding of local impacts is vital for public engagement.
Abstract: A survey of 119 countries shows that education is the strongest predictor of climate change awareness around the world. The results suggest that improving understanding of local impacts is vital for public engagement.

Journal ArticleDOI
TL;DR: In this article, a review of the state of the art on geographical patterns of species range shifts under contemporary climate change for plants and animals across both terrestrial and marine ecosystems is presented.
Abstract: Poleward and upward shifts are the most frequent types of range shifts that have been reported in response to contemporary climate change. However, the number of reports documenting other types of range shifts – such as in east-west directions across longitudes or, even more unexpectedly, towards tropical latitudes and lower elevations – is increasing rapidly. Recent studies show that these range shifts may not be so unexpected once the local climate changes are accounted for. We here provide an updated synthesis of the fast-moving research on climate-related range shifts. By describing the current state of the art on geographical patterns of species range shifts under contemporary climate change for plants and animals across both terrestrial and marine ecosystems, we identified a number of research shortfalls. In addition to the recognised geographic shortfall in the tropics, we found taxonomic and methodological shortfalls with knowledge gaps regarding range shifts of prokaryotes, lowland range shifts of terrestrial plants, and bathymetric range shifts of marine plants. Based on this review, we provide a research agenda for filling these gaps. We outline a comprehensive framework for assessing multidimensional changes in species distributions, which should then be contrasted with expectations based on climate change indices, such as velocity measures accounting for complex local climate changes. Finally, we propose a unified classification of geographical patterns of species range shifts, arranged in a bi-dimensional space defined by species’ persistence and movement rates. Placing the observed and expected shifts into this bi-dimensional space should lead to more informed assessments of extinction risks.

Journal ArticleDOI
TL;DR: In this paper, four central research questions -now tractable through advances in models, concepts and observations -were proposed to accelerate future progress in understanding the interactions between clouds, circulation and climate.
Abstract: Our understanding of the interactions between clouds, circulation and climate is limited. Four central research questions — now tractable through advances in models, concepts and observations — are proposed to accelerate future progress.

Journal ArticleDOI
TL;DR: The literature on atmospheric particulate maffer (PM), or atmospheric aerosol, has increased enormously over the last 2 decades and amounts now to some 1500-2000 papers per year in the refereed literature.
Abstract: The literature on atmospheric particulate maffer (PM), or atmospheric aerosol, has increased enormously over the last 2 decades and amounts now to some 1500—2000 papers per year in the refereed literature. This is in part due to the enormous advances in measurement technologies, which have allowed for an increasingly accurate understanding of the chemical composition and of the physical properties of atmospheric particles and of their processes in the atmosphere. The growing scientific interest in atmospheric aerosol particles is due to their high importance for environmental policy. In fact, particulate maffer constitutes one of the most challenging problems both for air quality and for climate change policies. In this context, this paper reviews the most recent results within the atmospheric aerosol sciences and thepoticy needs, which have driven much ofthe increase in monitoring and mechanistic research over the last 2 decades. The synthesis reveals many new processes and developments in the science underpinning climate—aerosol interactions and effects of PM on human health and the environment. However, while airborne particulate matter is responsible for globally important influences on premature human mortality, we stijl do not know the relative importance of the different chemical components of PM for these effects. Likewise, the magnitude of the overall effects of PM on climate remains highly uncertain. Despite the uncertainty there are many things that could be done to mitigate local and global problems of atmospheric PM. Recent analyses have shown that reducing black carbon (BC) emissions, using known control measures, would reduce global wanning and delay the time when anthropogenic effects on global temperature would exceed 2°C. Likewise, cost-effective control measures on ammonia, an important agricultural precursor gas for secondary inorganic aerosols (SlA), would reduce regional eutrophication and PM concentrations in large areas of Europe, China and the USA. Thus, there is much that could be done to reduce the effects of atmospheric PM on the climate and the health of the environment and the human population. A prioritized list of actions to mitigate the full range of effects ofPM is currently undeliverable due to shortcomings in the knowledge of aerosol science; among the shortcomings, the roles of PM in global climate and the relative roles of different PM precursor sources and their response to climate and land use change over the remaining decades of this century are prominent. In any case, the evidence from this paper strongly advocates for an integrated approach to air quality and climate policies.

Reference EntryDOI
TL;DR: This article reviewed the current understanding of mechanisms that are, or may be, acting to cause climate change over the past century, with an emphasis on those due to human activity, and discussed the general level of confidence in these estimates and areas of remaining uncertainty.
Abstract: Our current understanding of mechanisms that are, or may be, acting to cause climate change over the past century is briefly reviewed, with an emphasis on those due to human activity. The paper discusses the general level of confidence in these estimates and areas of remaining uncertainty. The effects of increases in the so-called well-mixed greenhouse gases, and in particular carbon dioxide, appear to be the dominant mechanism. However, there are considerable uncertainties in our estimates of many other forcing mechanisms; those associated with the so-called indirect aerosol forcing (whereby changes in aerosols can impact on cloud properties) may be the most serious, as its climatic effect may be of a similar size as, but opposite sign to, that due to carbon dioxide. The possible role of volcanic eruptions as a natural climate change mechanism is also highlighted.

Journal ArticleDOI
TL;DR: It is found that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle, and forests are expected to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks.
Abstract: Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective general disturbance-induced mechanisms and processes to also operate in an extreme context. The paucity of well-defined studies currently renders a quantitative meta-analysis impossible, but permits us to develop a deductive framework for identifying the main mechanisms (and coupling thereof) through which climate extremes may act on the carbon cycle. We find that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle. The expected regional impacts of future climate extremes will depend on changes in the probability and severity of their occurrence, on the compound effects and timing of different climate extremes, and on the vulnerability of each land-cover type modulated by management. Although processes and sensitivities differ among biomes, based on expert opinion, we expect forests to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote sensing vs. ground-based observational case studies reveals that many regions in the (sub-)tropics are understudied. Hence, regional investigations are needed to allow a global upscaling of the impacts of climate extremes on global carbon-climate feedbacks.

Journal ArticleDOI
TL;DR: In this article, a suite of nine dynamic global vegetation models and four ocean biogeochemical general circulation models were used to estimate trends driven by global and regional climate and atmospheric CO2 in land and oceanic CO2 exchanges with the atmosphere over the period 1990-2009, to attribute these trends to underlying processes in the models, and to quantify the uncertainty and level of inter-model agreement.
Abstract: . The land and ocean absorb on average just over half of the anthropogenic emissions of carbon dioxide (CO2) every year. These CO2 "sinks" are modulated by climate change and variability. Here we use a suite of nine dynamic global vegetation models (DGVMs) and four ocean biogeochemical general circulation models (OBGCMs) to estimate trends driven by global and regional climate and atmospheric CO2 in land and oceanic CO2 exchanges with the atmosphere over the period 1990–2009, to attribute these trends to underlying processes in the models, and to quantify the uncertainty and level of inter-model agreement. The models were forced with reconstructed climate fields and observed global atmospheric CO2; land use and land cover changes are not included for the DGVMs. Over the period 1990–2009, the DGVMs simulate a mean global land carbon sink of −2.4 ± 0.7 Pg C yr−1 with a small significant trend of −0.06 ± 0.03 Pg C yr−2 (increasing sink). Over the more limited period 1990–2004, the ocean models simulate a mean ocean sink of −2.2 ± 0.2 Pg C yr−1 with a trend in the net C uptake that is indistinguishable from zero (−0.01 ± 0.02 Pg C yr−2). The two ocean models that extended the simulations until 2009 suggest a slightly stronger, but still small, trend of −0.02 ± 0.01 Pg C yr−2. Trends from land and ocean models compare favourably to the land greenness trends from remote sensing, atmospheric inversion results, and the residual land sink required to close the global carbon budget. Trends in the land sink are driven by increasing net primary production (NPP), whose statistically significant trend of 0.22 ± 0.08 Pg C yr−2 exceeds a significant trend in heterotrophic respiration of 0.16 ± 0.05 Pg C yr−2 – primarily as a consequence of widespread CO2 fertilisation of plant production. Most of the land-based trend in simulated net carbon uptake originates from natural ecosystems in the tropics (−0.04 ± 0.01 Pg C yr−2), with almost no trend over the northern land region, where recent warming and reduced rainfall offsets the positive impact of elevated atmospheric CO2 and changes in growing season length on carbon storage. The small uptake trend in the ocean models emerges because climate variability and change, and in particular increasing sea surface temperatures, tend to counter\-act the trend in ocean uptake driven by the increase in atmospheric CO2. Large uncertainty remains in the magnitude and sign of modelled carbon trends in several regions, as well as regarding the influence of land use and land cover changes on regional trends.

Journal ArticleDOI
TL;DR: A review of the state of knowledge on the El Nino/Southern Oscillation (ENSO), a natural climate phenomenon, can be found in this article, where the authors discuss recent advances and insights into how climate change will affect this natural climate varibility cycle.
Abstract: This Review looks at the state of knowledge on the El Nino/Southern Oscillation (ENSO), a natural climate phenomenon. It discusses recent advances and insights into how climate change will affect this natural climate varibility cycle. The El Nino/Southern Oscillation (ENSO) is the dominant climate phenomenon affecting extreme weather conditions worldwide. Its response to greenhouse warming has challenged scientists for decades, despite model agreement on projected changes in mean state. Recent studies have provided new insights into the elusive links between changes in ENSO and in the mean state of the Pacific climate. The projected slow-down in Walker circulation is expected to weaken equatorial Pacific Ocean currents, boosting the occurrences of eastward-propagating warm surface anomalies that characterize observed extreme El Nino events. Accelerated equatorial Pacific warming, particularly in the east, is expected to induce extreme rainfall in the eastern equatorial Pacific and extreme equatorward swings of the Pacific convergence zones, both of which are features of extreme El Nino. The frequency of extreme La Nina is also expected to increase in response to more extreme El Ninos, an accelerated maritime continent warming and surface-intensified ocean warming. ENSO-related catastrophic weather events are thus likely to occur more frequently with unabated greenhouse-gas emissions. But model biases and recent observed strengthening of the Walker circulation highlight the need for further testing as new models, observations and insights become available.

Journal ArticleDOI
TL;DR: The authors suggest that it is more useful to regard the extreme circulation regime or weather event as being largely unaffected by climate change, and question whether known changes in the climate system's thermodynamic state affected the impact of a particular event.
Abstract: There is a tremendous desire to attribute causes to weather and climate events that is often challenging from a physical standpoint. Headlines attributing an event solely to either human-induced climate change or natural variability can be misleading when both are invariably in play. The conventional attribution framework struggles with dynamically driven extremes because of the small signal-to-noise ratios and often uncertain nature of the forced changes. Here, we suggest that a different framing is desirable, which asks why such extremes unfold the way they do. Specifically, we suggest that it is more useful to regard the extreme circulation regime or weather event as being largely unaffected by climate change, and question whether known changes in the climate system's thermodynamic state affected the impact of the particular event. Some examples briefly illustrated include 'snowmaggedon' in February 2010, superstorm Sandy in October 2012 and supertyphoon Haiyan in November 2013, and, in more detail, the Boulder floods of September 2013, all of which were influenced by high sea surface temperatures that had a discernible human component.

Journal ArticleDOI
TL;DR: In this article, the authors provide a synthesis of the effects of tropical deforestation on climate and implications for agriculture, both in the tropics and worldwide, and suggest critical thresholds beyond which rainfall is substantially reduced.
Abstract: Tropical forests provide many ecosystem and climatic services. This Review provides a synthesis of the effects of tropical deforestation on climate and implications for agriculture, both in the tropics and worldwide. Tower, ground-based and satellite observations indicate that tropical deforestation results in warmer, drier conditions at the local scale. Understanding the regional or global impacts of deforestation on climate, and ultimately on agriculture, requires modelling. General circulation models show that completely deforesting the tropics could result in global warming equivalent to that caused by burning of fossil fuels since 1850, with more warming and considerable drying in the tropics. More realistic scenarios of deforestation yield less warming and less drying, suggesting critical thresholds beyond which rainfall is substantially reduced. In regional, mesoscale models that capture topography and vegetation-based discontinuities, small clearings can actually enhance rainfall. At this smaller scale as well, a critical deforestation threshold exists, beyond which rainfall declines. Future agricultural productivity in the tropics is at risk from a deforestation-induced increase in mean temperature and the associated heat extremes and from a decline in mean rainfall or rainfall frequency. Through teleconnections, negative impacts on agriculture could extend well beyond the tropics.