scispace - formally typeset
Search or ask a question
Topic

Climate change

About: Climate change is a research topic. Over the lifetime, 99222 publications have been published within this topic receiving 3572006 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The most important determinant of habitat loss and fragmentation effects, averaged across species and geographic regions, was current maximum temperature, with mean precipitation change over the last 100 years of secondary importance as discussed by the authors.
Abstract: Climate change and habitat loss are both key threatening processes driving the global loss in biodiversity. Yet little is known about their synergistic effects on biological populations due to the complexity underlying both processes. If the combined effects of habitat loss and climate change are greater than the effects of each threat individually, current conservation management strategies may be inefficient and at worst ineffective. Therefore, there is a pressing need to identify whether interacting effects between climate change and habitat loss exist and, if so, quantify the magnitude of their impact. In this article, we present a meta-analysis of studies that quantify the effect of habitat loss on biological populations and examine whether the magnitude of these effects depends on current climatic conditions and historical rates of climate change. We examined 1319 papers on habitat loss and fragmentation, identified from the past 20 years, representing a range of taxa, landscapes, land-uses, geographic locations and climatic conditions. We find that current climate and climate change are important factors determining the negative effects of habitat loss on species density and/or diversity. The most important determinant of habitat loss and fragmentation effects, averaged across species and geographic regions, was current maximum temperature, with mean precipitation change over the last 100 years of secondary importance. Habitat loss and fragmentation effects were greatest in areas with high maximum temperatures. Conversely, they were lowest in areas where average rainfall has increased over time. To our knowledge, this is the first study to conduct a global terrestrial analysis of existing data to quantify and test for interacting effects between current climate, climatic change and habitat loss on biological populations. Understanding the synergistic effects between climate change and other threatening processes has critical implications for our ability to support and incorporate climate change adaptation measures into policy development and management response.

592 citations

Journal ArticleDOI
TL;DR: Changing sea ice conditions enable expanded September navigability for common open-water ships crossing the Arctic along the Northern Sea Route over the Russian Federation, robust new routes for moderately ice-strengthened ships over the North Pole, and new routes through the Northwest Passage for both vessel classes by midcentury.
Abstract: Recent historic observed lows in Arctic sea ice extent, together with climate model projections of additional ice reductions in the future, have fueled speculations of potential new trans-Arctic shipping routes linking the Atlantic and Pacific Oceans. However, numerical studies of how projected geophysical changes in sea ice will realistically impact ship navigation are lacking. To address this deficiency, we analyze seven climate model projections of sea ice properties, assuming two different climate change scenarios [representative concentration pathways (RCPs) 4.5 and 8.5] and two vessel classes, to assess future changes in peak season (September) Arctic shipping potential. By midcentury, changing sea ice conditions enable expanded September navigability for common open-water ships crossing the Arctic along the Northern Sea Route over the Russian Federation, robust new routes for moderately ice-strengthened (Polar Class 6) ships over the North Pole, and new routes through the Northwest Passage for both vessel classes. Although numerous other nonclimatic factors also limit Arctic shipping potential, these findings have important economic, strategic, environmental, and governance implications for the region.

591 citations

Journal ArticleDOI
TL;DR: In this article, the implications of climate change for equity and justice among vulnerable groups at local and sub-national levels are examined through an evaluation of key criteria relating to climate change scenarios and vulnerability in the developing world, and second through two southern African case studies that explore the ways in which livelihoods are differentially impacted by inequitable natural resource use policies, and community-based natural-resource management programs.
Abstract: Issues of equity and justice are high on international agendas dealing with the impacts of global climate change. But what are the implications of climate change for equity and justice amongst vulnerable groups at local and sub-national levels? We ask this question for three reasons: (a) there is a considerable literature suggesting that the poorest and most vulnerable groups will disproportionately experience the negative effects of 21st century climate change; (b) such changes are likely to impact significantly on developing world countries, where natural-resource dependency is high; and (c) international conventions increasingly recognise the need to centrally engage resource stakeholders in agendas in order to achieve their desired aims, as part of more holistic approaches to sustainable development. These issues however have implications for distributive and procedural justice, particularly when considered within the efforts of the UNFCCC. The issues are examined through an evaluation of key criteria relating to climate change scenarios and vulnerability in the developing world, and second through two southern African case studies that explore the ways in which livelihoods are differentially impacted by (i) inequitable natural-resource use policies, (ii) community-based natural-resource management programmes. Finally, we consider the placement of climate change amongst the package of factors affecting equity in natural-resource use, and whether this placement creates a case for considering climate change as ‘special’ amongst livelihood disturbing factors in the developing world.

590 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a synthesis of the effects of tropical deforestation on climate and implications for agriculture, both in the tropics and worldwide, and suggest critical thresholds beyond which rainfall is substantially reduced.
Abstract: Tropical forests provide many ecosystem and climatic services. This Review provides a synthesis of the effects of tropical deforestation on climate and implications for agriculture, both in the tropics and worldwide. Tower, ground-based and satellite observations indicate that tropical deforestation results in warmer, drier conditions at the local scale. Understanding the regional or global impacts of deforestation on climate, and ultimately on agriculture, requires modelling. General circulation models show that completely deforesting the tropics could result in global warming equivalent to that caused by burning of fossil fuels since 1850, with more warming and considerable drying in the tropics. More realistic scenarios of deforestation yield less warming and less drying, suggesting critical thresholds beyond which rainfall is substantially reduced. In regional, mesoscale models that capture topography and vegetation-based discontinuities, small clearings can actually enhance rainfall. At this smaller scale as well, a critical deforestation threshold exists, beyond which rainfall declines. Future agricultural productivity in the tropics is at risk from a deforestation-induced increase in mean temperature and the associated heat extremes and from a decline in mean rainfall or rainfall frequency. Through teleconnections, negative impacts on agriculture could extend well beyond the tropics.

590 citations

Journal ArticleDOI
TL;DR: A Widening Gap: Republican and Democratic Views on Climate Change as mentioned in this paper is a survey of the two sides' views on climate change, focusing on the Republican Party and the Democratic Party.
Abstract: (2008). A Widening Gap: Republican and Democratic Views on Climate Change. Environment: Science and Policy for Sustainable Development: Vol. 50, No. 5, pp. 26-35.

590 citations


Network Information
Related Topics (5)
Global warming
36.6K papers, 1.6M citations
96% related
Ecosystem
25.4K papers, 1.2M citations
89% related
Greenhouse gas
44.9K papers, 1.3M citations
88% related
Vegetation
49.2K papers, 1.4M citations
84% related
Biodiversity
44.8K papers, 1.9M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20253
20247
202312,805
202223,277
20217,120
20206,646