scispace - formally typeset
Search or ask a question
Topic

Climate change

About: Climate change is a research topic. Over the lifetime, 99222 publications have been published within this topic receiving 3572006 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The North American Regional Climate Change Assessment Program (NARCCAP) as mentioned in this paper explores separate and combined uncertainties in regional projections of future climate change resulting from the use of multiple atmosphere- ocean general circulation models (AOGCMs) to drive multiple regional climate models (RCMs).
Abstract: There are two main uncertainties in determining future climate: the trajectories of future emissions of greenhouse gases and aerosols, and the response of the global climate system to any given set of future emissions [Meehl et al., 2007]. These uncertainties normally are elucidated via application of global climate models, which provide information at relatively coarse spatial resolutions. Greater interest in, and concern about, the details of climate change at regional scales has provided the motivation for the application of regional climate models, which introduces additional uncertainty [Christensen et al., 2007a]. These uncertainties in fi ne- scale regional climate responses, in contrast to uncertainties of coarser spatial resolution global models in which regional models are nested, now have been documented in numerous contexts [Christensen et al., 2007a] and have been found to extend to uncertainties in climate impacts [Wood et al., 2004; Oleson et al., 2007]. While European research in future climate projections has moved forward systematically to examine combined uncertainties from global and regional models [Christensen et al., 2007b], North American climate programs have lagged behind. To fi ll this research gap, scientists developed the North American Regional Climate Change Assessment Program (-NARCCAP). The fundamental scientifi c motivation of thismore » international program is to explore separate and combined uncertainties in regional projections of future climate change resulting from the use of multiple atmosphere- ocean general circulation models (AOGCMs) to drive multiple regional climate models (RCMs). An equally important, and related, motivation for this program is to provide the climate impacts and adaptation community with high- resolution regional climate change scenarios that can be used for studies of the societal impacts of climate change and possible adaptation strategies.« less

586 citations

Journal ArticleDOI
TL;DR: In this paper, the authors quantify the uncertainty in the projections of these impacts arising from four sources of uncertainty: initial datasets (Data), statistical methods (SDM), general circulation models (GCM), and gas emission scenarios (GES), and extract the variance explained by each source from this whole ensemble of projections.
Abstract: Species distribution modelling has been widely applied in order to assess the potential impacts of climate change on biodiversity. Many methodological decisions, taken during the modelling process and forecasts, may, however, lead to a large variability in the assessment of future impacts. Using measures of species range change and turnover, the potential impacts of climate change on French stream fish species and assemblages were evaluated. Our main focus was to quantify the uncertainty in the projections of these impacts arising from four sources of uncertainty: initial datasets (Data), statistical methods [species distribution models (SDM)], general circulation models (GCM), and gas emission scenarios (GES). Several modalities of the aforementioned uncertainty sources were combined in an ensemble forecasting framework resulting in 8400 different projections. The variance explained by each source was then extracted from this whole ensemble of projections. Overall, SDM contributed to the largest variation in projections, followed by GCM, whose contribution increased over time equalling almost the proportion of variance explained by SDM in 2080. Data and GES had little influence on the variability in projections. Future projections of range change were more consistent for species with a large geographical extent (i.e., distribution along latitudinal or stream gradients) or with restricted environmental requirements (i.e., small thermal or elevation ranges). Variability in projections of turnover was spatially structured at the scale of France, indicating that certain particular geographical areas should be considered with care when projecting the potential impacts of climate change. The results of this study, therefore, emphasized that particular attention should be paid to the use of predictions ensembles resulting from the application of several statistical methods and climate models. Moreover, forecasted impacts of climate change should always be provided with an assessment of their uncertainty, so that management and conservation decisions can be taken in the full knowledge of their reliability.

585 citations

Journal ArticleDOI
26 Jun 2015-Science
TL;DR: An updated global surface temperature analysis reveals that global trends are higher than those reported by the Intergovernmental Panel on Climate Change, especially in recent decades, and that the central estimate for the rate of warming during the first 15 years of the 21st century is at least as great as the last half of the 20th century.
Abstract: Much study has been devoted to the possible causes of an apparent decrease in the upward trend of global surface temperatures since 1998, a phenomenon that has been dubbed the global warming “hiatus.” Here, we present an updated global surface temperature analysis that reveals that global trends are higher than those reported by the Intergovernmental Panel on Climate Change, especially in recent decades, and that the central estimate for the rate of warming during the first 15 years of the 21st century is at least as great as the last half of the 20th century. These results do not support the notion of a “slowdown” in the increase of global surface temperature.

584 citations

Journal ArticleDOI
TL;DR: In this article, quantitative estimates of climate change impacts on global food production have been made for the UK Hadley Centre's HadCM2 greenhouse gas only ensemble experiment and the more recent HadCM3 experiment (Hulme et al., 1999).
Abstract: Building on previous work quantitative estimates of climate change impacts on global food production have been made for the UK Hadley Centre's HadCM2 greenhouse gas only ensemble experiment and the more recent HadCM3 experiment (Hulme et al., 1999). The consequences for world food prices and the number of people at risk of hunger as defined by the Food and Agriculture Organisation (FAO, 1988) have also been assessed. Climate change is expected to increase yields at high and mid-latitudes, and lead to decreases at lower latitudes. This pattern becomes more pronounced as time progresses. The food system may be expected to accommodate such regional variations at the global level, with production, prices and the risk of hunger being relatively unaffected by the additional stress of climate change. By the 2080s the additional number of people at risk of hunger due to climate change is about 80 million people (±10 million depending on which of the four HadCM2 ensemble members is selected). However, some regions (particularly the arid and sub-humid tropics) will be adversely affected. A particular example is Africa, which is expected to experience marked reductions in yield, decreases in production, and increases in the risk of hunger as a result of climate change. The continent can expect to have between 55 and 65 million extra people at risk of hunger by the 2080s under the HadCM2 climate scenario. Under the HadCM3 climate scenario the effect is even more severe, producing an estimated additional 70+ million people at risk of hunger in Africa.

584 citations

Journal ArticleDOI
TL;DR: The trend in global wildfire potential under the climate change due to the greenhouse effect is investigated in this paper, which is measured by the Keetch-Byram Drought Index (KBDI), which is calculated using the observed maximum temperature and precipitation and projected changes at the end of this century (2070-2100) by general circulation models for present and future climate conditions, respectively.

583 citations


Network Information
Related Topics (5)
Global warming
36.6K papers, 1.6M citations
96% related
Ecosystem
25.4K papers, 1.2M citations
89% related
Greenhouse gas
44.9K papers, 1.3M citations
88% related
Vegetation
49.2K papers, 1.4M citations
84% related
Biodiversity
44.8K papers, 1.9M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20253
20248
202319,304
202233,576
20219,029
20208,394