scispace - formally typeset
Search or ask a question
Topic

Climate change

About: Climate change is a research topic. Over the lifetime, 99222 publications have been published within this topic receiving 3572006 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The North Pacific Gyre Oscillation (NPGO) as mentioned in this paper is the most widely used index of large-scale climate variability in the Northeast Pacific region and has been shown to be correlated with previously unexplained fluctuations of salinity, nutrients, chlorophyll, and zooplankton taxa.
Abstract: Decadal fluctuations in salinity, nutrients, chlorophyll, a variety of zooplankton taxa, and fish stocks in the Northeast Pacific are often poorly correlated with the most widely-used index of large-scale climate variability in the region - the Pacific Decadal Oscillation (PDO). We define a new pattern of climate change, the North Pacific Gyre Oscillation (NPGO) and show that its variability is significantly correlated with previously unexplained fluctuations of salinity, nutrients and chlorophyll. Fluctuations in the NPGO are driven by regional and basin-scale variations in wind-driven upwelling and horizontal advection - the fundamental processes controlling salinity and nutrient concentrations. Nutrient fluctuations drive concomitant changes in phytoplankton concentrations, and may force similar variability in higher trophic levels. The NPGO thus provides a strong indicator of fluctuations in the mechanisms driving planktonic ecosystem dynamics. The NPGO pattern extends beyond the North Pacific and is part of a global-scale mode of climate variability that is evident in global sea level trends and sea surface temperature. Therefore the amplification of the NPGO variance found in observations and in global warming simulations implies that the NPGO may play an increasingly important role in forcing global-scale decadal changes in marine ecosystems.

984 citations

Book
30 Dec 2002
TL;DR: In this paper, the authors provide a critical analysis of the role of cities in addressing climate change and the prospects for urban sustainability, arguing that key challenges concerning the resources and powers of local government, as well as conflicts between local goals for economic development and climate change mitigation, have restricted the level of local action on climate change.
Abstract: Climate change is one of the most challenging issues of our time. As key sites in the production and management of emissions of greenhouse gases, cities will be crucial for the implementation of international agreements and national policies on climate change. This book provides a critical analysis of the role of cities in addressing climate change and the prospects for urban sustainability. Cities and Climate Change is the first in-depth analysis of the role of cities in addressing climate change. The book argues that key challenges concerning the resources and powers of local government, as well as conflicts between local goals for economic development and climate change mitigation, have restricted the level of local action on climate change. These findings have significant implications for the prospects of mitigating climate change and achieving urban sustainability. This book provides a valuable interdisciplinary analysis of these issues, and will appeal to students and researchers interested in sustainability at local and global scales.

982 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the contribution of temperature feedbacks to the amplification of climate change in the Arctic region, and found that the largest contribution to Arctic amplification comes from a temperature feedback, while other contributions are substantially smaller or even opposeArctic amplification.
Abstract: Changes in climate are amplified in the Arctic region. An analysis of the CMIP5 state-of-the-art climate models reveals that temperature feedbacks are the dominant factor in this amplification, whereas the change in reflectivity of the Earth’s surface as sea ice and snow melt makes only a secondary contribution. Climate change is amplified in the Arctic region. Arctic amplification has been found in past warm1 and glacial2 periods, as well as in historical observations3,4 and climate model experiments5,6. Feedback effects associated with temperature, water vapour and clouds have been suggested to contribute to amplified warming in the Arctic, but the surface albedo feedback—the increase in surface absorption of solar radiation when snow and ice retreat—is often cited as the main contributor7,8,9,10. However, Arctic amplification is also found in models without changes in snow and ice cover11,12. Here we analyse climate model simulations from the Coupled Model Intercomparison Project Phase 5 archive to quantify the contributions of the various feedbacks. We find that in the simulations, the largest contribution to Arctic amplification comes from a temperature feedbacks: as the surface warms, more energy is radiated back to space in low latitudes, compared with the Arctic. This effect can be attributed to both the different vertical structure of the warming in high and low latitudes, and a smaller increase in emitted blackbody radiation per unit warming at colder temperatures. We find that the surface albedo feedback is the second main contributor to Arctic amplification and that other contributions are substantially smaller or even opposeArctic amplification.

976 citations

Journal ArticleDOI
TL;DR: Although climate change will severely affect biodiversity, in the near future, land-use change in tropical countries may lead to yet greater species loss, so a vastly expanded reserve network in the tropics will be needed to minimize global extinctions.
Abstract: Over the past few decades, land-use and climate change have led to substantial range contractions and species extinctions. Even more dramatic changes to global land cover are projected for this century. We used the Millennium Ecosystem Assessment scenarios to evaluate the exposure of all 8,750 land bird species to projected land-cover changes due to climate and land-use change. For this first baseline assessment, we assumed stationary geographic ranges that may overestimate actual losses in geographic range. Even under environmentally benign scenarios, at least 400 species are projected to suffer >50% range reductions by the year 2050 (over 900 by the year 2100). Although expected climate change effects at high latitudes are significant, species most at risk are predominantly narrow-ranged and endemic to the tropics, where projected range contractions are driven by anthropogenic land conversions. Most of these species are currently not recognized as imperiled. The causes, magnitude and geographic patterns of potential range loss vary across socioeconomic scenarios, but all scenarios (even the most environmentally benign ones) result in large declines of many species. Whereas climate change will severely affect biodiversity, in the near future, land-use change in tropical countries may lead to yet greater species loss. A vastly expanded reserve network in the tropics, coupled with more ambitious goals to reduce climate change, will be needed to minimize global extinctions.

976 citations

Journal ArticleDOI
TL;DR: The results from the study suggest that critical impact asymmetries due to both climate and socio-economic structures may deepen current production and consumption gaps between developed and developing world; it is suggested that adaptation of agricultural techniques will be central to limit potential damages under climate change.
Abstract: A comprehensive assessment of the impacts of climate change on agro-ecosystems over this century is developed, up to 2080 and at a global level, albeit with significant regional detail. To this end an integrated ecological–economic modelling framework is employed, encompassing climate scenarios, agro-ecological zoning information, socio-economic drivers, as well as world food trade dynamics. Specifically, global simulations are performed using the FAO/IIASA agro-ecological zone model, in conjunction with IIASAs global food system model, using climate variables from five different general circulation models, under four different socio-economic scenarios from the intergovernmental panel on climate change. First, impacts of different scenarios of climate change on bio-physical soil and crop growth determinants of yield are evaluated on a 5′×5′ latitude/longitude global grid; second, the extent of potential agricultural land and related potential crop production is computed. The detailed bio-physical results are then fed into an economic analysis, to assess how climate impacts may interact with alternative development pathways, and key trends expected over this century for food demand and production, and trade, as well as key composite indices such as risk of hunger and malnutrition, are computed. This modelling approach connects the relevant bio-physical and socio-economic variables within a unified and coherent framework to produce a global assessment of food production and security under climate change. The results from the study suggest that critical impact asymmetries due to both climate and socio-economic structures may deepen current production and consumption gaps between developed and developing world; it is suggested that adaptation of agricultural techniques will be central to limit potential damages under climate change.

974 citations


Network Information
Related Topics (5)
Global warming
36.6K papers, 1.6M citations
96% related
Ecosystem
25.4K papers, 1.2M citations
89% related
Greenhouse gas
44.9K papers, 1.3M citations
88% related
Vegetation
49.2K papers, 1.4M citations
84% related
Biodiversity
44.8K papers, 1.9M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20253
20247
202312,805
202223,277
20217,120
20206,646