scispace - formally typeset
Search or ask a question
Topic

Climate change

About: Climate change is a research topic. Over the lifetime, 99222 publications have been published within this topic receiving 3572006 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Reducing fishing mortality in the majority of fisheries, which are currently fully exploited or overexploited, is the principal feasible means of reducing the impacts of climate change.
Abstract: Current global fisheries production of ≈160 million tons is rising as a result of increases in aquaculture production. A number of climate-related threats to both capture fisheries and aquaculture are identified, but we have low confidence in predictions of future fisheries production because of uncertainty over future global aquatic net primary production and the transfer of this production through the food chain to human consumption. Recent changes in the distribution and productivity of a number of fish species can be ascribed with high confidence to regional climate variability, such as the El Nino–Southern Oscillation. Future production may increase in some high-latitude regions because of warming and decreased ice cover, but the dynamics in low-latitude regions are governed by different processes, and production may decline as a result of reduced vertical mixing of the water column and, hence, reduced recycling of nutrients. There are strong interactions between the effects of fishing and the effects of climate because fishing reduces the age, size, and geographic diversity of populations and the biodiversity of marine ecosystems, making both more sensitive to additional stresses such as climate change. Inland fisheries are additionally threatened by changes in precipitation and water management. The frequency and intensity of extreme climate events is likely to have a major impact on future fisheries production in both inland and marine systems. Reducing fishing mortality in the majority of fisheries, which are currently fully exploited or overexploited, is the principal feasible means of reducing the impacts of climate change.

813 citations

Journal ArticleDOI
01 Aug 2004-Ecology
TL;DR: A long-term decline in Daphnia populations, the keystone herbivore, is associated with an expanding temporal mismatch with the spring diatom bloom and may have severe consequences for resource flow to upper trophic levels.
Abstract: The largest uncertainty in forecasting the effects of climate change on eco- systems is in understanding how it will affect the nature of interactions among species. Climate change may have unexpected consequences because different species show unique responses to changes in environmental temperatures. Here we show that increasingly warmer springs since 1962 have disrupted the trophic linkages between phytoplankton and zoo- plankton in a large temperate lake because of differing sensitivity to vernal warming. The timing of thermal stratification and the spring diatom bloom have advanced by more than 20 days during this time period. A long-term decline in Daphnia populations, the keystone herbivore, is associated with an expanding temporal mismatch with the spring diatom bloom and may have severe consequences for resource flow to upper trophic levels.

813 citations

Journal ArticleDOI
TL;DR: The authors review the literature on climate change impacts on livestock and livestock systems in developing countries, and identify some key knowledge and data gaps, and also list some of the broad researchable issues associated with how smallholders and pastoralists might respond to climate change.

813 citations

Journal ArticleDOI
01 Dec 1994-Nature
TL;DR: This article found that at six times during the last glaciation, huge armadas of icebergs launched from Canada spread across the northern Atlantic Ocean, each triggering a climate response of global extent.
Abstract: Observations of large and abrupt climate changes recorded in Greenland ice cores have spurred a search for clues to their cause. This search has revealed that at six times during the last glaciation, huge armadas of icebergs launched from Canada spread across the northern Atlantic Ocean, each triggering a climate response of global extent.

812 citations

Journal ArticleDOI
TL;DR: In this article, the implications of climate change for the broader practice of ecological restoration must be considered, and the usefulness of historical ecosystem conditions as targets and references must be set against the likelihood that restoring these historic ecosystems is unlikely to be easy, or even possible, in the changed biophysical conditions of the future.
Abstract: There is an increasing consensus that global climate change occurs and that potential changes in climate are likely to have important regional consequences for biota and ecosystems. Ecological restoration, including (re)afforestation and rehabilitation of degraded land, is included in the array of potential human responses to climate change. However, the implications of climate change for the broader practice of ecological restoration must be considered. In particular, the usefulness of historical ecosystem conditions as targets and references must be set against the likelihood that restoring these historic ecosystems is unlikely to be easy, or even possible, in the changed biophysical conditions of the future. We suggest that more consideration and debate needs to be directed at the implications of climate change for restoration practice.

811 citations


Network Information
Related Topics (5)
Global warming
36.6K papers, 1.6M citations
96% related
Ecosystem
25.4K papers, 1.2M citations
89% related
Greenhouse gas
44.9K papers, 1.3M citations
88% related
Vegetation
49.2K papers, 1.4M citations
84% related
Biodiversity
44.8K papers, 1.9M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20253
20247
202312,805
202223,277
20217,120
20206,646