scispace - formally typeset
Search or ask a question
Topic

Clock gating

About: Clock gating is a research topic. Over the lifetime, 7838 publications have been published within this topic receiving 107903 citations.


Papers
More filters
Patent
David L. Thompson1
22 Mar 2000
TL;DR: In this article, power consumption in medical devices is reduced through the operation of circuits at clock speeds of lower levels to adequately complete desired functions during predetermined time periods (e.g., blanking interval, upper rate interval, etc.) just-in-time prior to subsequent required functional processes.
Abstract: Power consumption in medical devices is reduced through the operation of circuits at clock speeds of lower levels to adequately complete desired functions during predetermined time periods (e.g., blanking interval, upper rate interval, etc.) just-in-time prior to subsequent required functional processes; by providing supply voltages tailored for various circuits of an integrated circuit; by operating two or more circuits of an integrated circuit at different clock frequencies; by changing the supply voltage level “on the fly” as required by specific circuit timing functions required for various circuitry based on clock frequencies used to control operation of such circuitry; and/or by tailoring back gate bias or adjusting back gate bias “on the fly” for circuits based on the supply voltage level applied to the circuits.

105 citations

Patent
14 Jan 2002
TL;DR: In this paper, a crosspoint switch circuit generates both a master bit clock and a master word clock signal from an incoming high-speed serial data stream using a clock and data recovery circuit.
Abstract: An asynchronous serial crosspoint switch is word synchronized to each of a number of transceiver circuits. The crosspoint switch circuit generates both a master bit clock and a master word clock signal. A transceiver circuit recovers the master bit clock signal from an incoming high-speed serial data stream using a clock and data recovery circuit. The recovered bit clock signal is used as a timing signal by which data is serialized and transmitted to the crosspoint switch circuit. The data stream transmitted to the switch circuit is frequency locked to the master bit clock signal, such that the serial data stream need only be phase adjusted with a data recovery circuit. To recover word timing, the switch circuit issues alignment words to the transceivers during link initialization. The transceivers perform word alignment and establish a local word lock. Alignment words are then reissued to the switch circuit using the local word clock. The switch circuit compares the boundary of the received word clock to the master word clock and, if misaligned, the transceiver shifts its transmitted word by one bit and retries. Necessary edge transition density is provided by overhead bits which also designate special command words asserted between a transceiver and a switch circuit. Flow control information is routed from a receiving transceiver back to the transmitting transceiver using the overhead bits in order to assert a ready-to-receive or a not-ready-to-receive flow control signal. The overhead bits additionally provide information regarding connection requests and other information.

105 citations

Proceedings ArticleDOI
08 Apr 2002
TL;DR: A novel technique based on local clock gating and synchronous handshake protocols that achieves stage level interlocking characteristics in synchronous pipelines similar to that of asynchronous pipelines is presented.
Abstract: Locality principles are becoming paramount in controlling advancement of data through pipelined systems. Achieving fine grained power down and progressive pipeline stalls at the local stage level is therefore becoming increasingly, important to enable lower dynamic power consumption while keeping introduced switching noise under control as well as avoiding global distribution of timing critical stall signals. It has long been known that the interlocking properties of as asynchronous pipelined systems have a potential to provide such benefits. However it has not been understood how such interlocking can be achieved in synchronous pipelines. This paper presents a novel technique based on local clock gating and synchronous handshake protocols that achieves stage level interlocking characteristics in synchronous pipelines similar to that of asynchronous pipelines. The presented technique is directly applicable to traditional synchronous pipelines and works equally well for two-phase clocked pipelines based on transparent latches, as well as one-phase clocked pipelines based on master-slave latches.

103 citations

Patent
14 Jun 1999
TL;DR: In this article, a frequency determination circuit and a fine adjust circuit for phase synchronization with an external clock signal at coarse and fine precision, respectively, are presented. And a clock reproduction circuit is provided which generates an internal clock signal phase-locking with a reference clock signal stably even when the operating environment changes.
Abstract: A frequency determination circuit generating a clock signal phase-locking with an external clock signal at a coarse precision and a fine adjust circuit generating an internal synchronizing signal phase-locking with the external clock signal at a fine precision are provided. The fine adjust circuit has a function of adjusting the phase of the frequency determination circuit when phase synchronization is to be carried out exceeding the adjust range thereof. The frequency determination circuit and the fine adjust circuit receive a clock power supply voltage. A clock reproduction circuit is provided which generates an internal clock signal phase-locking with an external clock signal or a reference clock signal stably even when the operating environment changes.

103 citations

Book
01 Jan 1995
TL;DR: This book shows one of recommendation of the book that you need to read, which is a kind of precious book written by an experienced author about clock distribution networks in vlsi circuits and systems.

103 citations


Network Information
Related Topics (5)
CMOS
81.3K papers, 1.1M citations
89% related
Integrated circuit
82.7K papers, 1M citations
85% related
Electronic circuit
114.2K papers, 971.5K citations
85% related
Semiconductor memory
45.4K papers, 663.1K citations
83% related
Transistor
138K papers, 1.4M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202324
202231
202137
202050
201968
201884