scispace - formally typeset
Search or ask a question
Topic

Clock gating

About: Clock gating is a research topic. Over the lifetime, 7838 publications have been published within this topic receiving 107903 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an all-optical clock recovery circuit for operation with short data packets of 10-Gb/s rate is presented, using a Fabry-Perot etalon and a nonlinear UNI gate and is capable of acquiring the clock signal within a few bits.
Abstract: We demonstrate an all-optical clock recovery circuit for operation with short data packets of 10-Gb/s rate. The circuit uses a Fabry-Perot etalon and a nonlinear UNI gate and is capable of acquiring the clock signal within a few bits.

74 citations

Journal ArticleDOI
TL;DR: A bottom-up approach for the automatic extraction and synthesis of dynamic power management circuitry starting from structural logic-level specifications is proposed, which leverage the compact BDD-based representation of Boolean and pseudo-Boolean functions to detect idle conditions where the clock can be stopped without compromising functional correctness.
Abstract: Recent results have shown that dynamic power management is effective in reducing the total power consumption of sequential circuits. In this paper, we propose a bottom-up approach for the automatic extraction and synthesis of dynamic power management circuitry starting from structural logic-level specifications. Our techniques leverage the compact BDD-based representation of Boolean and pseudo-Boolean functions to detect idle conditions where the clock can be stopped without compromising functional correctness. Moreover, symbolic techniques allow accurate probabilistic computations; in particular, they enable the use of non-equiprobable primary input distributions, a key step in the construction of models that match the behavior of real hardware devices with a high degree of fidelity. The results are encouraging, since power savings of up to 34% have been obtained on standard benchmark circuits.

74 citations

Proceedings ArticleDOI
13 Oct 2003
TL;DR: A new approach to global clock distribution is presented in which traditional tree-driven grids are augmented with on-chip inductors to resonate the clock capacitance at the fundamental frequency of the clock node.
Abstract: We present a new approach to global clock distribution in which traditional tree-driven grids are augmented with on-chip inductors to resonate the clock capacitance at the fundamental frequency of the clock node. Rather than being dissipated as heat, the energy of the fundamental resonates between electric and magnetic forms. The clock drivers must only provide the energy necessary to overcome losses. As a result, power reduction of over 80% is possible depending on the Q of the resonant system. Clock latency is also improved because the effective capacitance of the grid is lower, and fewer buffer stages are necessary to drive the grid. Skew and jitter reductions come about because of this reduced buffer latency.

74 citations

Patent
30 Aug 1996
TL;DR: In this article, a dynamic flip-flop circuit is presented, where a one-shot dynamic flip flop is used to generate a delayed clock output (319) followed by a falling edge (440) of a clock signal.
Abstract: A high-performance dynamic flip-flop circuit implementation. The dynamic flip-flop circuit comprises an "implicit" one-shot to generate a delayed clock output (319). The flip-flop comprises a delay block (317) coupled to a clock input (305). The flip-flop may be a D-type flip-flop. In a positive-edge-triggered embodiment of the flip-flop, a falling edge (440) of the delayed clock output (319) follows a rising edge (444) of a clock signal after a delay period (448). The flip-flop clocks in new data at a data input (305) in response to the clock input (310) during this delay period (448). Data is held in a storage block (360). The flip-flop has extremely good transient characteristics, especially set-up and clock-to-output times. The flip-flop consumes no static power.

74 citations

Patent
26 Apr 1999
TL;DR: In this article, an apparatus to power up an integrated device from a low power state wherein the clock circuit for generating the internal clocks has been disabled is provided, where a small set of programmable registers are reserved inside the CPU interface unit (CIF).
Abstract: An apparatus to power up an integrated device from a low power state wherein the clock circuit for generating the internal clocks has been disabled is provided. A small set of programmable registers is reserved inside the CPU interface unit (CIF) of an integrated device (e.g., a display/graphics controller) which can be accessed by the CPU even during a low power state mode (e.g., software controlled sleep mode D3 in the preferred embodiment). The programmable registers store programmed bits that are used in indicating to the Power Management Unit (PMU) the desired power state and whether the clock circuits are to be enabled or disabled. The programmable registers also store multiplication and division factors to be used by the clock circuits in determining their clock rate. Using this information, the integrated device can go through a predetermined power sequence to transition from the low power state to the normal state which includes powering up the clock circuits (e.g., PLLs and oscillator).

74 citations


Network Information
Related Topics (5)
CMOS
81.3K papers, 1.1M citations
89% related
Integrated circuit
82.7K papers, 1M citations
85% related
Electronic circuit
114.2K papers, 971.5K citations
85% related
Semiconductor memory
45.4K papers, 663.1K citations
83% related
Transistor
138K papers, 1.4M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202324
202231
202137
202050
201968
201884