scispace - formally typeset
Search or ask a question
Topic

Clone (B-cell biology)

About: Clone (B-cell biology) is a research topic. Over the lifetime, 3555 publications have been published within this topic receiving 165566 citations.


Papers
More filters
Journal ArticleDOI
01 Oct 1976-Science
TL;DR: Each patient's cancer may require individual specific therapy, and even this may be thwarted by emergence of a genetically variant subline resistant to the treatment, which should be directed toward understanding and controlling the evolutionary process in tumors before it reaches the late stage usually seen in clinical cancer.
Abstract: It is proposed that most neoplasms arise from a single cell of origin, and tumor progression results from acquired genetic variability within the original clone allowing sequential selection of more aggressive sublines. Tumor cell populations are apparently more genetically unstable than normal cells, perhaps from activation of specific gene loci in the neoplasm, continued presence of carcinogen, or even nutritional deficiencies within the tumor. The acquired genetic insta0ility and associated selection process, most readily recognized cytogenetically, results in advanced human malignancies being highly individual karyotypically and biologically. Hence, each patient's cancer may require individual specific therapy, and even this may be thwarted by emergence of a genetically variant subline resistant to the treatment. More research should be directed toward understanding and controlling the evolutionary process in tumors before it reaches the late stage usually seen in clinical cancer.

6,179 citations

Journal ArticleDOI
29 Sep 1988-Nature
TL;DR: Results argue that bcl-2 provided a distinct survival signal to the cell and may contribute to neoplasia by allowing a clone to persist until other oncogenes, such as c-myc, become activated.
Abstract: A common feature of follicular lymphoma, the most prevalent haematological malignancy in humans, is a chromosome translocation (t(14;18] that has coupled the immunoglobulin heavy chain locus to a chromosome 18 gene denoted bcl-2. By analogy with the translocated c-myc oncogene in other B-lymphoid tumours bcl-2 is a candidate oncogene, but no biological effects of bcl-2 have yet been reported. To test whether bcl-2 influences the growth of haematopoietic cells, either alone or together with a deregulated c-myc gene, we have introduced a human bcl-2 complementary DNA using a retroviral vector into bone marrow cells from either normal or E mu-myc transgenic mice, in which B-lineage cells constitutively express the c-myc gene. Bcl-2 cooperated with c-myc to promote proliferation of B-cell precursors, some of which became tumorigenic. To determine how bcl-2 expression impinges on growth factor requirements, the gene was introduced into a lymphoid and a myeloid cell line that require interleukin 3 (IL-3). In the absence of IL-3, bcl-2 promoted the survival of the infected cells but they persisted in a G0 state, rather than proliferating. These results argue that bcl-2 provided a distinct survival signal to the cell and may contribute to neoplasia by allowing a clone to persist until other oncogenes, such as c-myc, become activated.

3,238 citations

Journal ArticleDOI
24 Apr 1987-Cell
TL;DR: The results show that in normal animals tolerance to self-MHC is due to clonal elimination rather than suppression, and indicate that tolerance induction may occur in the thymus at the time immature thymocytes are selected to move into the mature thymocyte pool.

2,187 citations

Journal ArticleDOI
TL;DR: Cell fusion techniques have been used to produce hybrids between myeloma cells and antibody‐producing cells that are permanently adapted to grow in tissue culture and are capable of inducing antibody-producing tumors in mice.
Abstract: Cell fusion techniques have been used to produce hybrids between myeloma cells and antibody-producing cells. The hybrid lines derived are permanently adapted to grow in tissue culture and are capable of inducing antibody-producing tumors in mice. Spleens from mice immunized against sheep red blood cells (SRBC) were fused to an 8-azaguanine-resistant clone (X63-Ag8) of MOPC 21 myeloma. Over 50% of the derived hybrid lines produce and secrete immunoglobulins different from the MOPC 21 myeloma. About 10% of the hybrid lines exhibit anti-SRBC activity. The high proportion of antibody-producing hybrids suggests that the fusion involves a restricted fraction of the spleen cell population, probably cells committed to antibody production. In order to avoid the presence of the MOPC 21 heavy chain in the specific hybrids, another myeloma cell line (NSI/1-Ag4-1) has been used. This is a nonsecreting variant of the MOPC 21 myeloma which does not express heavy chains. Three anti-SRBC (probably of the mu, gamma2b and gamma1 classes, respectively) and two anti-2,4,6-trinitrophenyl (of the mu class) antibody-producing hybrids have been repeatedly cloned. By random selection and by selection of specific clones according to their lytic activity (clone plaque selection), a number of different lines have been constructed. Such lines express different combinations of the four possible chains of each hybrid line: the myeloma gamma and K chains and the specific antibody heavy and light chains. In three cases (Sp1, Sp2 and Sp7) it is shown that only the specific H and L combination has activity and that the myeloma chains are unable to substitute for them. In most cases lines have been derived which no longer express the MOPC 21 chains but only the specific antibody chains.

2,170 citations

Journal Article
TL;DR: IL-10 may inhibit macrophage accessory cell function which is independent of TCR-class II MHC interactions, as well as inhibits IL-2-induced IFN-gamma production by Th1 cells in an Ag-free system requiring only the presence of accessory cells.
Abstract: Murine IL-10 (cytokine synthesis inhibitory factor) inhibits cytokine production by Th1 cell clones when they are activated under conditions requiring the presence of APC. By preincubating APC with IL-10, we demonstrate that IL-10 acts principally on APC to inhibit IFN-gamma production by Th1 clones. Moreover, IL-10 is not active when Th1 cells are stimulated with glutaraldehyde-fixed APC, which also indicates that its action involves regulation of APC function. Furthermore, IL-10 inhibits cytokine synthesis by Th1 cells stimulated with the super-antigen Staphylococcus enterotoxin B, which does not appear to require processing. Flow microfluorimetry purified splenic or peritoneal B cells and macrophages, and B cell and macrophage cell lines can present Ag to Th1 clones. However, IL-10 acts only on sorted macrophages and the macrophage cell line to suppress IFN-gamma production by Th1 clones. IL-10 does not show this effect when B cells are used as APC. In contrast, IL-10 does not impair the ability of APC to stimulate cytokine production by Th2 cells. IL-10 does not decrease IFN-gamma-induced I-Ad levels on a macrophage cell line. Inasmuch as IL-10 also inhibits IL-2-induced IFN-gamma production by Th1 cells in an Ag-free system requiring only the presence of accessory cells, these data suggest that IL-10 may inhibit macrophage accessory cell function which is independent of TCR-class II MHC interactions.

1,907 citations


Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202143
202052
201953
201859
201742
201664