scispace - formally typeset
Search or ask a question
Topic

Cloud storage

About: Cloud storage is a research topic. Over the lifetime, 10699 publications have been published within this topic receiving 113122 citations.


Papers
More filters
Proceedings ArticleDOI
13 Mar 2017
TL;DR: This paper shows that the proposed BC-based smart home framework is secure by thoroughly analysing its security with respect to the fundamental security goals of confidentiality, integrity, and availability, and presents simulation results to highlight that the overheads are insignificant relative to its security and privacy gains.
Abstract: Internet of Things (IoT) security and privacy remain a major challenge, mainly due to the massive scale and distributed nature of IoT networks. Blockchain-based approaches provide decentralized security and privacy, yet they involve significant energy, delay, and computational overhead that is not suitable for most resource-constrained IoT devices. In our previous work, we presented a lightweight instantiation of a BC particularly geared for use in IoT by eliminating the Proof of Work (POW) and the concept of coins. Our approach was exemplified in a smart home setting and consists of three main tiers namely: cloud storage, overlay, and smart home. In this paper we delve deeper and outline the various core components and functions of the smart home tier. Each smart home is equipped with an always online, high resource device, known as “miner” that is responsible for handling all communication within and external to the home. The miner also preserves a private and secure BC, used for controlling and auditing communications. We show that our proposed BC-based smart home framework is secure by thoroughly analysing its security with respect to the fundamental security goals of confidentiality, integrity, and availability. Finally, we present simulation results to highlight that the overheads (in terms of traffic, processing time and energy consumption) introduced by our approach are insignificant relative to its security and privacy gains.

1,340 citations

Book ChapterDOI
25 Jan 2010
TL;DR: This work considers the problem of building a secure cloud storage service on top of a public cloud infrastructure where the service provider is not completely trusted by the customer and describes several architectures that combine recent and non-standard cryptographic primitives to achieve this goal.
Abstract: We consider the problem of building a secure cloud storage service on top of a public cloud infrastructure where the service provider is not completely trusted by the customer We describe, at a high level, several architectures that combine recent and non-standard cryptographic primitives in order to achieve our goal We survey the benefits such an architecture would provide to both customers and service providers and give an overview of recent advances in cryptography motivated specifically by cloud storage

1,333 citations

Journal ArticleDOI
TL;DR: This paper proposes a mechanism that combines data deduplication with dynamic data operations in the privacy preserving public auditing for secure cloud storage and shows that the proposed mechanism is highly efficient and provably secure.
Abstract: Using cloud storage, users can remotely store their data and enjoy the on-demand high-quality applications and services from a shared pool of configurable computing resources, without the burden of local data storage and maintenance. However, the fact that users no longer have physical possession of the outsourced data makes the data integrity protection in cloud computing a formidable task, especially for users with constrained computing resources. Moreover, users should be able to just use the cloud storage as if it is local, without worrying about the need to verify its integrity. Thus, enabling public auditability for cloud storage is of critical importance so that users can resort to a third-party auditor (TPA) to check the integrity of outsourced data and be worry free. To securely introduce an effective TPA, the auditing process should bring in no new vulnerabilities toward user data privacy, and introduce no additional online burden to user. In this paper, we propose a secure cloud storage system supporting privacy-preserving public auditing. We further extend our result to enable the TPA to perform audits for multiple users simultaneously and efficiently. Extensive security and performance analysis show the proposed schemes are provably secure and highly efficient. Our preliminary experiment conducted on Amazon EC2 instance further demonstrates the fast performance of the design.

982 citations

Proceedings ArticleDOI
16 Oct 2012
TL;DR: In this article, the authors proposed a searchable symmetric encryption (SSE) scheme to achieve sublinear search time, security against adaptive chosen-keyword attacks, compact indexes and the ability to add and delete files efficiently.
Abstract: Searchable symmetric encryption (SSE) allows a client to encrypt its data in such a way that this data can still be searched. The most immediate application of SSE is to cloud storage, where it enables a client to securely outsource its data to an untrusted cloud provider without sacrificing the ability to search over it.SSE has been the focus of active research and a multitude of schemes that achieve various levels of security and efficiency have been proposed. Any practical SSE scheme, however, should (at a minimum) satisfy the following properties: sublinear search time, security against adaptive chosen-keyword attacks, compact indexes and the ability to add and delete files efficiently. Unfortunately, none of the previously-known SSE constructions achieve all these properties at the same time. This severely limits the practical value of SSE and decreases its chance of deployment in real-world cloud storage systems.To address this, we propose the first SSE scheme to satisfy all the properties outlined above. Our construction extends the inverted index approach (Curtmola et al., CCS 2006) in several non-trivial ways and introduces new techniques for the design of SSE. In addition, we implement our scheme and conduct a performance evaluation, showing that our approach is highly efficient and ready for deployment.

887 citations

Proceedings ArticleDOI
23 Oct 2011
TL;DR: The WAS architecture, global namespace, and data model is described, as well as its resource provisioning, load balancing, and replication systems.
Abstract: Windows Azure Storage (WAS) is a cloud storage system that provides customers the ability to store seemingly limitless amounts of data for any duration of time. WAS customers have access to their data from anywhere at any time and only pay for what they use and store. In WAS, data is stored durably using both local and geographic replication to facilitate disaster recovery. Currently, WAS storage comes in the form of Blobs (files), Tables (structured storage), and Queues (message delivery). In this paper, we describe the WAS architecture, global namespace, and data model, as well as its resource provisioning, load balancing, and replication systems.

871 citations


Network Information
Related Topics (5)
Encryption
98.3K papers, 1.4M citations
89% related
Server
79.5K papers, 1.4M citations
88% related
Wireless sensor network
142K papers, 2.4M citations
86% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
85% related
Network packet
159.7K papers, 2.2M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023217
2022521
2021585
2020822
20191,056