scispace - formally typeset
Search or ask a question
Topic

Cloud top

About: Cloud top is a research topic. Over the lifetime, 3027 publications have been published within this topic receiving 85568 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The various algorithms being used for the remote sensing of cloud properties from MODIS data with an emphasis on the pixel-level retrievals (referred to as Level-2 products), with 1-km or 5-km spatial resolution at nadir are described.
Abstract: The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of five instruments aboard the Terra Earth Observing System (EOS) platform launched in December 1999. After achieving final orbit, MODIS began Earth observations in late February 2000 and has been acquiring data since that time. The instrument is also being flown on the Aqua spacecraft, launched in May 2002. A comprehensive set of remote sensing algorithms for cloud detection and the retrieval of cloud physical and optical properties have been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate change studies, climate modeling, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. We will describe the various algorithms being used for the remote sensing of cloud properties from MODIS data with an emphasis on the pixel-level retrievals (referred to as Level-2 products), with 1-km or 5-km spatial resolution at nadir. An example of each Level-2 cloud product from a common data granule (5 min of data) off the coast of South America will be discussed. Future efforts will also be mentioned. Relevant points related to the global gridded statistics products (Level-3) are highlighted though additional details are given in an accompanying paper in this issue.

1,636 citations

Journal ArticleDOI
TL;DR: The goal is development of a cloud and cloud shadow detection algorithm suitable for routine usage with Landsat images and as high as 96.4%.

1,620 citations

Journal ArticleDOI
TL;DR: The role of fractional area coverage by cloud types in the energy balance of the earth is investigated through joint use of International Satellite Cloud Climatology Project (ISCCP) C1 cloud data and Earth Radiation Budget Experiment (ERBE) broadband energy flux data for the one-year period March 1985 through February 1986 as discussed by the authors.
Abstract: The role of fractional area coverage by cloud types in the energy balance of the earth is investigated through joint use of International Satellite Cloud Climatology Project (ISCCP) C1 cloud data and Earth Radiation Budget Experiment (ERBE) broadband energy flux data for the one-year period March 1985 through February 1986. Multiple linear regression is used to relate the radiation budget data to the cloud data. Comparing cloud forcing estimates obtained from the ISCCP-ERBE regression with those derived from the ERBE scene identification shows generally good agreement except over snow, in tropical convective regions, and in regions that are either nearly cloudless or always overcast. It is suggested that a substantial fraction of the disagreement in longwave cloud forcing in tropical convective regions is associated with the fact that the ERBE scene identification does not take into account variations in upper-tropospheric water vapor. On a global average basis, low clouds make the largest contri...

710 citations

Journal ArticleDOI
TL;DR: In this article, an annual cycle of cloud and radiation measurements made as part of the Surface Heat Budget of the Arctic (SHEBA) program are utilized to determine which properties of Arctic clouds control the surface radiation balance.
Abstract: An annual cycle of cloud and radiation measurements made as part of the Surface Heat Budget of the Arctic (SHEBA) program are utilized to determine which properties of Arctic clouds control the surface radiation balance. Surface cloud radiative forcing (CF), defined as the difference between the all-sky and clear-sky net surface radiative fluxes, was calculated from ground-based measurements of broadband fluxes and results from a clear-sky model. Longwave cloud forcing (CFLW) is shown to be a function of cloud temperature, height, and emissivity (i.e., microphysics). Shortwave cloud forcing (CFSW) is a function of cloud transmittance, surface albedo, and the solar zenith angle. The annual cycle of Arctic CF reveals cloud-induced surface warming through most of the year and a short period of surface cooling in the middle of summer, when cloud shading effects overwhelm cloud greenhouse effects. The sensitivity of CFLW to cloud fraction is about 0.65 W m−2 per percent cloudiness. The sensitivity of ...

594 citations

Journal ArticleDOI
TL;DR: In this article, the authors evaluated the fidelity of large-eddy simulations to represent the turbulent structure of stratocumulus-topped boundary layers in the first research flight (RF01) of DYCOMS-II field study.
Abstract: Data from the first research flight (RF01) of the second Dynamics and Chemistry of Marine Stratocumulus (DYCOMS-II) field study are used to evaluate the fidelity with which large-eddy simulations (LESs) can represent the turbulent structure of stratocumulus-topped boundary layers. The initial data and forcings for this case placed it in an interesting part of parameter space, near the boundary where cloud-top mixing is thought to render the cloud layer unstable on the one hand, or tending toward a decoupled structure on the other hand. The basis of this evaluation consists of sixteen 4-h simulations from 10 modeling centers over grids whose vertical spacing wa s5ma t thecloud-top interface and whose horizontal spacing was 35 m. Extensive sensitivity studies of both the configuration of the case and the numerical setup also enhanced the analysis. Overall it was found that (i) if efforts are made to reduce spurious mixing at cloud top, either by refining the vertical grid or limiting the effects of the subgrid model in this region, then the observed turbulent and thermodynamic structure of the layer can be reproduced with some fidelity; (ii) the base, or native configuration of most simulations greatly overestimated mixing at cloud top, tending toward a decoupled layer in which cloud liquid water path and turbulent intensities were grossly underestimated; (iii) the sensitivity of the simulations to the representation of mixing at cloud top is, to a certain extent, amplified by particulars of this case. Overall the results suggest that the use of LESs to map out the behavior of the stratocumulus-topped boundary layer in this interesting region of parameter space requires a more compelling representation of processes at cloud top. In the absence of significant leaps in the understanding of subgrid-scale (SGS) physics, such a representation can only be achieved by a significant refinement in resolution—a refinement that, while conceivable given existing resources, is probably still beyond the reach of most centers.

575 citations


Network Information
Related Topics (5)
Stratosphere
15.7K papers, 586.6K citations
92% related
Climate model
22.2K papers, 1.1M citations
88% related
Sea surface temperature
21.2K papers, 874.7K citations
85% related
Atmosphere
30.8K papers, 737.8K citations
84% related
Aerosol
33.8K papers, 1.1M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202370
2022146
202183
202073
201976
201865