scispace - formally typeset
Search or ask a question
Topic

Cluster analysis

About: Cluster analysis is a research topic. Over the lifetime, 146546 publications have been published within this topic receiving 2962017 citations. The topic is also known as: clustering & cluster analysis in marketing.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper provides an introduction to the field of artificial neural nets by reviewing six important neural net models that can be used for pattern classification and exploring how some existing classification and clustering algorithms can be performed using simple neuron-like components.
Abstract: Artificial neural net models have been studied for many years in the hope of achieving human-like performance in the fields of speech and image recognition. These models are composed of many nonlinear computational elements operating in parallel and arranged in patterns reminiscent of biological neural nets. Computational elements or nodes are connected via weights that are typically adapted during use to improve performance. There has been a recent resurgence in the field of artificial neural nets caused by new net topologies and algorithms, analog VLSI implementation techniques, and the belief that massive parallelism is essential for high performance speech and image recognition. This paper provides an introduction to the field of artificial neural nets by reviewing six important neural net models that can be used for pattern classification. These nets are highly parallel building blocks that illustrate neural net components and design principles and can be used to construct more complex systems. In addition to describing these nets, a major emphasis is placed on exploring how some existing classification and clustering algorithms can be performed using simple neuron-like components. Single-layer nets can implement algorithms required by Gaussian maximum-likelihood classifiers and optimum minimum-error classifiers for binary patterns corrupted by noise. More generally, the decision regions required by any classification algorithm can be generated in a straightforward manner by three-layer feed-forward nets.

7,798 citations

Proceedings ArticleDOI
07 Jan 2007
TL;DR: By augmenting k-means with a very simple, randomized seeding technique, this work obtains an algorithm that is Θ(logk)-competitive with the optimal clustering.
Abstract: The k-means method is a widely used clustering technique that seeks to minimize the average squared distance between points in the same cluster. Although it offers no accuracy guarantees, its simplicity and speed are very appealing in practice. By augmenting k-means with a very simple, randomized seeding technique, we obtain an algorithm that is Θ(logk)-competitive with the optimal clustering. Preliminary experiments show that our augmentation improves both the speed and the accuracy of k-means, often quite dramatically.

7,539 citations

Book
01 Jan 2013
TL;DR: This book discusses data mining through the lens of cluster analysis, which examines the relationships between data, clusters, and algorithms, and some of the techniques used to solve these problems.
Abstract: 1 Introduction 1.1 What is Data Mining? 1.2 Motivating Challenges 1.3 The Origins of Data Mining 1.4 Data Mining Tasks 1.5 Scope and Organization of the Book 1.6 Bibliographic Notes 1.7 Exercises 2 Data 2.1 Types of Data 2.2 Data Quality 2.3 Data Preprocessing 2.4 Measures of Similarity and Dissimilarity 2.5 Bibliographic Notes 2.6 Exercises 3 Exploring Data 3.1 The Iris Data Set 3.2 Summary Statistics 3.3 Visualization 3.4 OLAP and Multidimensional Data Analysis 3.5 Bibliographic Notes 3.6 Exercises 4 Classification: Basic Concepts, Decision Trees, and Model Evaluation 4.1 Preliminaries 4.2 General Approach to Solving a Classification Problem 4.3 Decision Tree Induction 4.4 Model Overfitting 4.5 Evaluating the Performance of a Classifier 4.6 Methods for Comparing Classifiers 4.7 Bibliographic Notes 4.8 Exercises 5 Classification: Alternative Techniques 5.1 Rule-Based Classifier 5.2 Nearest-Neighbor Classifiers 5.3 Bayesian Classifiers 5.4 Artificial Neural Network (ANN) 5.5 Support Vector Machine (SVM) 5.6 Ensemble Methods 5.7 Class Imbalance Problem 5.8 Multiclass Problem 5.9 Bibliographic Notes 5.10 Exercises 6 Association Analysis: Basic Concepts and Algorithms 6.1 Problem Definition 6.2 Frequent Itemset Generation 6.3 Rule Generation 6.4 Compact Representation of Frequent Itemsets 6.5 Alternative Methods for Generating Frequent Itemsets 6.6 FP-Growth Algorithm 6.7 Evaluation of Association Patterns 6.8 Effect of Skewed Support Distribution 6.9 Bibliographic Notes 6.10 Exercises 7 Association Analysis: Advanced Concepts 7.1 Handling Categorical Attributes 7.2 Handling Continuous Attributes 7.3 Handling a Concept Hierarchy 7.4 Sequential Patterns 7.5 Subgraph Patterns 7.6 Infrequent Patterns 7.7 Bibliographic Notes 7.8 Exercises 8 Cluster Analysis: Basic Concepts and Algorithms 8.1 Overview 8.2 K-means 8.3 Agglomerative Hierarchical Clustering 8.4 DBSCAN 8.5 Cluster Evaluation 8.6 Bibliographic Notes 8.7 Exercises 9 Cluster Analysis: Additional Issues and Algorithms 9.1 Characteristics of Data, Clusters, and Clustering Algorithms 9.2 Prototype-Based Clustering 9.3 Density-Based Clustering 9.4 Graph-Based Clustering 9.5 Scalable Clustering Algorithms 9.6 Which Clustering Algorithm? 9.7 Bibliographic Notes 9.8 Exercises 10 Anomaly Detection 10.1 Preliminaries 10.2 Statistical Approaches 10.3 Proximity-Based Outlier Detection 10.4 Density-Based Outlier Detection 10.5 Clustering-Based Techniques 10.6 Bibliographic Notes 10.7 Exercises Appendix A Linear Algebra Appendix B Dimensionality Reduction Appendix C Probability and Statistics Appendix D Regression Appendix E Optimization Author Index Subject Index

7,356 citations

Journal ArticleDOI
TL;DR: A measure is presented which indicates the similarity of clusters which are assumed to have a data density which is a decreasing function of distance from a vector characteristic of the cluster which can be used to infer the appropriateness of data partitions.
Abstract: A measure is presented which indicates the similarity of clusters which are assumed to have a data density which is a decreasing function of distance from a vector characteristic of the cluster. The measure can be used to infer the appropriateness of data partitions and can therefore be used to compare relative appropriateness of various divisions of the data. The measure does not depend on either the number of clusters analyzed nor the method of partitioning of the data and can be used to guide a cluster seeking algorithm.

6,757 citations

Journal ArticleDOI
01 Jun 2010
TL;DR: A brief overview of clustering is provided, well known clustering methods are summarized, the major challenges and key issues in designing clustering algorithms are discussed, and some of the emerging and useful research directions are pointed out.
Abstract: Organizing data into sensible groupings is one of the most fundamental modes of understanding and learning. As an example, a common scheme of scientific classification puts organisms into a system of ranked taxa: domain, kingdom, phylum, class, etc. Cluster analysis is the formal study of methods and algorithms for grouping, or clustering, objects according to measured or perceived intrinsic characteristics or similarity. Cluster analysis does not use category labels that tag objects with prior identifiers, i.e., class labels. The absence of category information distinguishes data clustering (unsupervised learning) from classification or discriminant analysis (supervised learning). The aim of clustering is to find structure in data and is therefore exploratory in nature. Clustering has a long and rich history in a variety of scientific fields. One of the most popular and simple clustering algorithms, K-means, was first published in 1955. In spite of the fact that K-means was proposed over 50 years ago and thousands of clustering algorithms have been published since then, K-means is still widely used. This speaks to the difficulty in designing a general purpose clustering algorithm and the ill-posed problem of clustering. We provide a brief overview of clustering, summarize well known clustering methods, discuss the major challenges and key issues in designing clustering algorithms, and point out some of the emerging and useful research directions, including semi-supervised clustering, ensemble clustering, simultaneous feature selection during data clustering, and large scale data clustering.

6,601 citations


Network Information
Related Topics (5)
Artificial neural network
207K papers, 4.5M citations
90% related
Deep learning
79.8K papers, 2.1M citations
88% related
Feature extraction
111.8K papers, 2.1M citations
87% related
Software
130.5K papers, 2M citations
86% related
Convolutional neural network
74.7K papers, 2M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202416
20237,685
202217,389
20219,145
202010,460
201911,543