scispace - formally typeset
Search or ask a question
Topic

Cobalt

About: Cobalt is a research topic. Over the lifetime, 69899 publications have been published within this topic receiving 1242058 citations. The topic is also known as: Co & Element 27.


Papers
More filters
Journal ArticleDOI
01 Jul 2020-Small
TL;DR: A new way to construct single-atom-modified pCN is developed and provides a green and highly efficient strategy for refractory antibiotics removal.
Abstract: Semiconductor photocatalysis is a promising technology to tackle refractory antibiotics contamination in water. Herein, a facile in situ growth strategy is developed to implant single-atom cobalt in polymeric carbon nitride (pCN) via the bidentate ligand for efficient photocatalytic degradation of oxytetracycline (OTC). The atomic characterizations indicate that single-atom cobalt is successfully anchored on pCN by covalently forming the CoO bond and CoN bond, which will strengthen the interaction between single-atom cobalt and pCN. This single-atom cobalt can efficiently expand optical absorption, increase electron density, facilitate charge separation and transfer, and promote OTC degradation. As the optimal sample, Co(1.28%)pCN presents an outstanding apparent rate constant for OTC degradation (0.038 min-1 ) under visible light irradiation, which is about 3.7 times than that of the pristine pCN. The electron spin resonance (ESR) tests and reactive species trapping experiments demonstrate that the 1 O2 , h+ , •O2 - , and •OH are responsible for OTC degradation. This work develops a new way to construct single-atom-modified pCN and provides a green and highly efficient strategy for refractory antibiotics removal.

214 citations

Journal ArticleDOI
TL;DR: It is suggested that the octahedrally coordinated Co(2+) species is easily oxidized and shows high catalytic activity for CO oxidation.
Abstract: Co3O4 with a spinel structure is a very active oxide catalyst for the oxidation of CO. In such catalysts, octahedrally coordinated Co(3+) is considered to be the active site, while tetrahedrally coordinated Co(2+) is assumed to be basically inactive. In this study, a highly ordered mesoporous CoO has been prepared by H2 reduction of nanocast Co3O4 at low temperature (250 °C). The as-prepared CoO material, which has a rock-salt structure with a single Co(2+) octahedrally coordinated by lattice oxygen in Fm3m symmetry, exhibited unexpectedly high activity for CO oxidation. Careful investigation of the catalytic behavior of mesoporous CoO catalyst led to the conclusion that the oxidation of surface Co(2+) to Co(3+) causes the high activity. Other mesoporous spinels (CuCo2O4, CoCr2O4, and CoFe2O4) with different Co species substituted with non/low-active metal ions were also synthesized to investigate the catalytically active site of cobalt-based catalysts. The results show that not only is the octahedrally coordinated Co(3+) highly active but also the octahedrally coordinated Co(2+) species in CoFe2O4 with an inverse spinel structure shows some activity. These results suggest that the octahedrally coordinated Co(2+) species is easily oxidized and shows high catalytic activity for CO oxidation.

214 citations

Journal ArticleDOI
TL;DR: The new chiral manganese complexes have been evaluated in the oxygenation of prochiral olefins and sulfides using sodium hypochlorite, hydrogen peroxide, or N-methylmorpholine N-oxide/m-chloroperbenzoic acid as oxidant.
Abstract: New chiral Schiff base complexes have been obtained by condensation of 2,2‘-diamino-1,1‘-binaphthalene or 1,2-diaminocyclohexane and various salicylaldehydes and by subsequent metalation with manganese, iron, cobalt, nickel, copper, or zinc. The complete 1H and 13C NMR characterization of the ligands is reported, as are the X-ray crystal structures of (1R,2R)-(−)-N,N‘-bis[3-(N,N-dimethylamino)salicylidene]-trans-1,2-cyclohexanediimine and [(1R,2R)-(−)-N,N‘-bis(salicylidene)-trans-1,2-cyclohexanediiminato]copper(II). The new chiral manganese complexes have been evaluated in the oxygenation of prochiral olefins and sulfides using sodium hypochlorite, hydrogen peroxide, or N-methylmorpholine N-oxide/m-chloroperbenzoic acid as oxidant.

214 citations

Journal ArticleDOI
TL;DR: In this paper, the synthesis and characterization of single-phase cobalt manganese oxide (CMO) spinels Co3−xMnxO4 (0.1 − 0.34) were reported by the pulsed-spray evaporation chemical vapor deposition (PSE-CVD) method.
Abstract: This work reports the synthesis and characterization of single-phase cobalt manganese oxide (CMO) spinels Co3−xMnxO4 (0 ≤ x ≤ 0.34) prepared by the pulsed-spray evaporation chemical vapor deposition (PSE–CVD) method. Structure and cationic distribution of the obtained films were characterized by XRD, FTIR, XPS and Raman spectroscopy. Temperature-programmed reduction/re-oxidation (TPR/TPO) was used to elucidate the redox properties of the deposited films. The electrical resistivity was measured in the temperature range of 27–450 °C. XRD, FTIR and Raman spectra reveal the formation of single-phase cubic spinel structures up to x = 0.34. With the substitution of cobalt cations with Mn3+ and Mn4+ ions, the unit cell of the cubic spinel shows a linear increase; the TPR results indicate a lower reducibility while the TPO results display no evident change; also, the ratio Co3+/Co2+ decreased and both electrical resistivity and thermal stability showed increasing trends. The observed behavior is attributed to the progressive incorporation of manganese, which induces structural defects favoring the formation of anionic vacancies and the restriction of the oxygen mobility. The catalytic activities of the doped spinels were investigated for the deep oxidation of unsaturated hydrocarbons (C2H2 and C3H6). The introduction of a slight amount of manganese shifted the light-off curves toward lower temperatures. Based on the XPS results, the enhanced catalytic activity is thought to benefit from the abundant presence of oxygen vacancies in the doped oxide.

213 citations

Patent
21 Feb 1996
TL;DR: In this paper, the atomic percentage of iron is less than 10 percent, and the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1.
Abstract: At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10 3 K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf).sub.a (Al,Zn).sub.b (Ti,Nb).sub.c (Cu.sub.x Fe.sub.y (Ni,Co) z ) d wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d·y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

213 citations


Network Information
Related Topics (5)
Oxide
213.4K papers, 3.6M citations
90% related
Aqueous solution
189.5K papers, 3.4M citations
89% related
Raman spectroscopy
122.6K papers, 2.8M citations
88% related
Catalysis
400.9K papers, 8.7M citations
86% related
Adsorption
226.4K papers, 5.9M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,622
20225,202
20212,220
20202,950
20193,215
20183,007