scispace - formally typeset
Search or ask a question
Topic

Cobalt

About: Cobalt is a research topic. Over the lifetime, 69899 publications have been published within this topic receiving 1242058 citations. The topic is also known as: Co & Element 27.


Papers
More filters
Journal ArticleDOI
TL;DR: It is hypothesized that Fe is the most-active site in the catalyst, while CoOOH primarily provides a conductive, high-surface area, chemically stabilizing host.
Abstract: Cobalt oxides and (oxy)hydroxides have been widely studied as electrocatalysts for the oxygen evolution reaction (OER). For related Ni-based materials, the addition of Fe dramatically enhances OER activity. The role of Fe in Co-based materials is not well-documented. We show that the intrinsic OER activity of Co1–xFex(OOH) is ∼100-fold higher for x ≈ 0.6–0.7 than for x = 0 on a per-metal turnover frequency basis. Fe-free CoOOH absorbs Fe from electrolyte impurities if the electrolyte is not rigorously purified. Fe incorporation and increased activity correlate with an anodic shift in the nominally Co2+/3+ redox wave, indicating strong electronic interactions between the two elements and likely substitutional doping of Fe for Co. In situ electrical measurements show that Co1–xFex(OOH) is conductive under OER conditions (∼0.7–4 mS cm–1 at ∼300 mV overpotential), but that FeOOH is an insulator with measurable conductivity (2.2 × 10–2 mS cm–1) only at high overpotentials >400 mV. The apparent OER activity of ...

1,449 citations

Journal ArticleDOI
TL;DR: Recent advances in the synthesis of various magnetic nanoparticles using colloidal chemical approaches are reviewed and ferrite nanoparticles have been synthesized by the thermal decomposition of organometallic precursors followed by oxidation or by low-temperature reactions inside reverse micelles.

1,433 citations

Journal ArticleDOI
07 Jan 2016-Nature
TL;DR: In this paper, the role of the two different catalytic sites of pure cobalt and coexisting domains of cobalt metal and cobalt oxide has been evaluated, showing that surface cobalt atoms of the atomically thin layers have higher intrinsic activity and selectivity towards formate production, at lower overpotentials.
Abstract: Electroreduction of CO2 into useful fuels, especially if driven by renewable energy, represents a potentially 'clean' strategy for replacing fossil feedstocks and dealing with increasing CO2 emissions and their adverse effects on climate. The critical bottleneck lies in activating CO2 into the CO2(•-) radical anion or other intermediates that can be converted further, as the activation usually requires impractically high overpotentials. Recently, electrocatalysts based on oxide-derived metal nanostructures have been shown to enable CO2 reduction at low overpotentials. However, it remains unclear how the electrocatalytic activity of these metals is influenced by their native oxides, mainly because microstructural features such as interfaces and defects influence CO2 reduction activity yet are difficult to control. To evaluate the role of the two different catalytic sites, here we fabricate two kinds of four-atom-thick layers: pure cobalt metal, and co-existing domains of cobalt metal and cobalt oxide. Cobalt mainly produces formate (HCOO(-)) during CO2 electroreduction; we find that surface cobalt atoms of the atomically thin layers have higher intrinsic activity and selectivity towards formate production, at lower overpotentials, than do surface cobalt atoms on bulk samples. Partial oxidation of the atomic layers further increases their intrinsic activity, allowing us to realize stable current densities of about 10 milliamperes per square centimetre over 40 hours, with approximately 90 per cent formate selectivity at an overpotential of only 0.24 volts, which outperforms previously reported metal or metal oxide electrodes evaluated under comparable conditions. The correct morphology and oxidation state can thus transform a material from one considered nearly non-catalytic for the CO2 electroreduction reaction into an active catalyst. These findings point to new opportunities for manipulating and improving the CO2 electroreduction properties of metal systems, especially once the influence of both the atomic-scale structure and the presence of oxide are mechanistically better understood.

1,407 citations

Journal ArticleDOI
TL;DR: The advantage of Co/PMS compared to the traditional Fenton Reagent is attributed primarily to the oxidizing strength of the radicals formed, since sulfate radicals are stronger oxidants than hydroxyl and the thermodynamics of the transition-metal-oxidant coupling.
Abstract: A highly efficient advanced oxidation process for the destruction of organic contaminants in water is reported. The technology is based on the cobalt-mediated decomposition of peroxymonosulfate that leads to the formation of very strong oxidizing species (sulfate radicals) in the aqueous phase. The system is a modification of the Fenton Reagent, since an oxidant is coupled with a transition metal in a similar manner. Sulfate radicals were identified with quenching studies using specific alcohols. The study was primarily focused on comparing the cobalt/peroxymonosulfate (Co/PMS) reagent with the traditional Fenton Reagent [Fe(II)/H2O2] in the dark, at the pH range 2.0-9.0 with and without the presence of buffers such as phosphate and carbonate. Three model contaminants that show diversity in structure were tested: 2,4-dichlorophenol, atrazine, and naphthalene. Cobalt/peroxymonosulfate was consistently proven to be more efficient than the Fenton Reagent for the degradation of 2,4-dichlorophenol and atrazine, at all the conditions tested. At high pH values, where the efficiency of the Fenton Reagent was diminished, the reactivity of the Co/PMS system was sustained at high values. When naphthalene was treated with the two oxidizing systems in comparison, the Fenton Reagent demonstrated higher degradation efficiencies than cobalt/peroxymonosulfate at acidic pH, but, at higher pH (neutral), the latter was proven much more effective. The extent of mineralization, as total organic carbon removed,was also monitored, and again the Co/PMS reagent demonstrated higher efficiencies than the Fenton Reagent. Cobalt showed true catalytic activity in the overall process, since extremely low concentrations (in the range of microg/L) were sufficient for the decomposition of the oxidant and thus the radical generation. The advantage of Co/PMS compared to the traditional Fenton Reagent is attributed primarily to the oxidizing strength of the radicals formed, since sulfate radicals are stronger oxidants than hydroxyl and the thermodynamics of the transition-metal-oxidant coupling.

1,390 citations


Network Information
Related Topics (5)
Oxide
213.4K papers, 3.6M citations
90% related
Aqueous solution
189.5K papers, 3.4M citations
89% related
Raman spectroscopy
122.6K papers, 2.8M citations
88% related
Catalysis
400.9K papers, 8.7M citations
86% related
Adsorption
226.4K papers, 5.9M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,622
20225,202
20212,220
20202,950
20193,215
20183,007