scispace - formally typeset
Search or ask a question
Topic

Cobalt sulfide

About: Cobalt sulfide is a research topic. Over the lifetime, 1094 publications have been published within this topic receiving 35769 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: An anion exchange method is reported to synthesize a complex ternary metal sulfides hollow structure, namely nickel cobalt sulfide ball-in-ball hollow spheres that show long-term cycling performance and potential application in high-performance electrochemical capacitors.
Abstract: While the synthesis of hollow structures of transition metal oxides is well established, it is extremely challenging to fabricate complex hollow structures for mixed transition metal sulfides. Here we report an anion exchange method to synthesize a complex ternary metal sulfides hollow structure, namely nickel cobalt sulfide ball-in-ball hollow spheres. Uniform nickel cobalt glycerate solid spheres are first synthesized as the precursor and subsequently chemically transformed into nickel cobalt sulfide ball-in-ball hollow spheres. When used as electrode materials for electrochemical capacitors, these nickel cobalt sulfide hollow spheres deliver a specific capacitance of 1,036 F g(-1) at a current density of 1.0 A g(-1). An asymmetric supercapacitor based on these ball-in-ball structures shows long-term cycling performance with a high energy density of 42.3 Wh kg(-1) at a power density of 476 W kg(-1), suggesting their potential application in high-performance electrochemical capacitors.

1,053 citations

Journal ArticleDOI
TL;DR: A new class of Co9 S8 @MoS2 core-shell structures formed on carbon nanofibers composed of cubic Co 9 S8 as cores and layered MoS2 as shells is described, serving as a bifunctional electrocatalyst for H2 and O2 evolution.
Abstract: A new class of Co9 S8 @MoS2 core-shell structures formed on carbon nanofibers composed of cubic Co9 S8 as cores and layered MoS2 as shells is described. The core-shell design of these nanostructures allows the advantages of MoS2 and Co9 S8 to be combined, serving as a bifunctional electrocatalyst for H2 and O2 evolution.

665 citations

Journal ArticleDOI
22 Aug 2014-ACS Nano
TL;DR: An asymmetric supercapacitor fabricated by the ternary sulfide nanosheet arrays as positive electrode and porous graphene film as negative electrode demonstrates outstanding electrochemical performance for practical energy storage applications.
Abstract: A facile one-step electrodeposition method is developed to prepare ternary nickel cobalt sulfide interconnected nanosheet arrays on conductive carbon substrates as electrodes for supercapacitors, resulting in exceptional energy storage performance. Taking advantages of the highly conductive, mesoporous nature of the nanosheets and open framework of the three-dimensional nanoarchitectures, the ternary sulfide electrodes exhibit high specific capacitance (1418 F g–1 at 5 A g–1 and 1285 F g–1 at 100 A g–1) with excellent rate capability. An asymmetric supercapacitor fabricated by the ternary sulfide nanosheet arrays as positive electrode and porous graphene film as negative electrode demonstrates outstanding electrochemical performance for practical energy storage applications. Our asymmetric supercapacitors show a high energy density of 60 Wh kg–1 at a power density of 1.8 kW kg–1. Even when charging the cell within 4.5 s, the energy density is still as high as 33 Wh kg–1 at an outstanding power density of ...

661 citations

Journal ArticleDOI
TL;DR: In this article, a simple strategy for fabricating edge site-enriched nickel-cobalt sulfide (Ni-Co-S) nanoparticles decorated on graphene frameworks to form integrated hybrid architectures (NiCo−S/G) via an in situ chemically converted method is reported.
Abstract: Tailor-made edge site-enriched inorganics coupled graphene hybrids hold a promising platform material for high-performance supercapacitors. Herein, we report a simple strategy for fabricating edge site-enriched nickel–cobalt sulfide (Ni–Co–S) nanoparticles decorated on graphene frameworks to form integrated hybrid architectures (Ni–Co–S/G) via an in situ chemically converted method. The Kirkendall effect-involved anion exchange reaction, e.g. the etching-like effort of the S2− ions, plays a crucial role for the formation of the edge site-enriched nanostructure. Density functional theory (DFT) calculations reveal that the Ni–Co–S edge sites have a high electrochemical activity and strong affinity for OH− in the electrolyte, which are responsible for the enhanced electrochemical performance. Benefiting from the integrated structures of Ni–Co–S nanoparticles and conductive graphene substrates, the resultant Ni–Co–S/G hybrid electrodes exhibit a high specific capacitance of 1492 F g−1 at the current density of 1 A g−1, a superior rate capability of 96% when the current density is increased to 50 A g−1, and excellent electrochemical stabilities. An asymmetric supercapacitor fabricated using the edge site-enriched Ni–Co–S/G hybrids as the positive electrode and porous carbon nanosheets (PCNS) as negative electrodes shows a high energy density of 43.3 W h kg−1 at a power density of 0.8 kW kg−1, and an energy density of 28.4 W h kg−1 can be retained even at a high power density of 22.1 kW kg−1.

591 citations

Journal ArticleDOI
TL;DR: 3D hollow hybrid composites with ultrafine cobalt sulfide nanoparticles uniformly embedded within the well-graphitized porous carbon polyhedra/carbon nanotubes framework are rationally fabricated using a green and one-step method involving the simultaneous pyrolysis and sulfidation of ZIF-67.
Abstract: 3D hollow hybrid composites with ultrafine cobalt sulfide nanoparticles uniformly embedded within the well-graphitized porous carbon polyhedra/carbon nanotubes framework are rationally fabricated using a green and one-step method involving the simultaneous pyrolysis and sulfidation of ZIF-67. Because of the synergistic coupling effects favored by the unique nanohybridization, these composites exhibit high specific capacity, excellent cycle stability, and superior rate capability when evaluated as electrodes in lithium-ion batteries.

590 citations


Network Information
Related Topics (5)
Oxide
213.4K papers, 3.6M citations
88% related
Nanoparticle
85.9K papers, 2.6M citations
87% related
Carbon nanotube
109K papers, 3.6M citations
86% related
Graphene
144.5K papers, 4.9M citations
85% related
Adsorption
226.4K papers, 5.9M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202380
2022184
2021110
2020114
2019146
2018139