scispace - formally typeset
Search or ask a question
Topic

Code generation

About: Code generation is a research topic. Over the lifetime, 12988 publications have been published within this topic receiving 206330 citations.


Papers
More filters
Book
01 Jan 1986
TL;DR: This book discusses the design of a Code Generator, the role of the Lexical Analyzer, and other topics related to code generation and optimization.
Abstract: 1 Introduction 1.1 Language Processors 1.2 The Structure of a Compiler 1.3 The Evolution of Programming Languages 1.4 The Science of Building a Compiler 1.5 Applications of Compiler Technology 1.6 Programming Language Basics 1.7 Summary of Chapter 1 1.8 References for Chapter 1 2 A Simple Syntax-Directed Translator 2.1 Introduction 2.2 Syntax Definition 2.3 Syntax-Directed Translation 2.4 Parsing 2.5 A Translator for Simple Expressions 2.6 Lexical Analysis 2.7 Symbol Tables 2.8 Intermediate Code Generation 2.9 Summary of Chapter 2 3 Lexical Analysis 3.1 The Role of the Lexical Analyzer 3.2 Input Buffering 3.3 Specification of Tokens 3.4 Recognition of Tokens 3.5 The Lexical-Analyzer Generator Lex 3.6 Finite Automata 3.7 From Regular Expressions to Automata 3.8 Design of a Lexical-Analyzer Generator 3.9 Optimization of DFA-Based Pattern Matchers 3.10 Summary of Chapter 3 3.11 References for Chapter 3 4 Syntax Analysis 4.1 Introduction 4.2 Context-Free Grammars 4.3 Writing a Grammar 4.4 Top-Down Parsing 4.5 Bottom-Up Parsing 4.6 Introduction to LR Parsing: Simple LR 4.7 More Powerful LR Parsers 4.8 Using Ambiguous Grammars 4.9 Parser Generators 4.10 Summary of Chapter 4 4.11 References for Chapter 4 5 Syntax-Directed Translation 5.1 Syntax-Directed Definitions 5.2 Evaluation Orders for SDD's 5.3 Applications of Syntax-Directed Translation 5.4 Syntax-Directed Translation Schemes 5.5 Implementing L-Attributed SDD's 5.6 Summary of Chapter 5 5.7 References for Chapter 5 6 Intermediate-Code Generation 6.1 Variants of Syntax Trees 6.2 Three-Address Code 6.3 Types and Declarations 6.4 Translation of Expressions 6.5 Type Checking 6.6 Control Flow 6.7 Backpatching 6.8 Switch-Statements 6.9 Intermediate Code for Procedures 6.10 Summary of Chapter 6 6.11 References for Chapter 6 7 Run-Time Environments 7.1 Storage Organization 7.2 Stack Allocation of Space 7.3 Access to Nonlocal Data on the Stack 7.4 Heap Management 7.5 Introduction to Garbage Collection 7.6 Introduction to Trace-Based Collection 7.7 Short-Pause Garbage Collection 7.8 Advanced Topics in Garbage Collection 7.9 Summary of Chapter 7 7.10 References for Chapter 7 8 Code Generation 8.1 Issues in the Design of a Code Generator 8.2 The Target Language 8.3 Addresses in the Target Code 8.4 Basic Blocks and Flow Graphs 8.5 Optimization of Basic Blocks 8.6 A Simple Code Generator 8.7 Peephole Optimization 8.8 Register Allocation and Assignment 8.9 Instruction Selection by Tree Rewriting 8.10 Optimal Code Generation for Expressions 8.11 Dynamic Programming Code-Generation 8.12 Summary of Chapter 8 8.13 References for Chapter 8 9 Machine-Independent Optimizations 9.1 The Principal Sources of Optimization 9.2 Introduction to Data-Flow Analysis 9.3 Foundations of Data-Flow Analysis 9.4 Constant Propagation 9.5 Partial-Redundancy Elimination 9.6 Loops in Flow Graphs 9.7 Region-Based Analysis 9.8 Symbolic Analysis 9.9 Summary of Chapter 9 9.10 References for Chapter 9 10 Instruction-Level Parallelism 10.1 Processor Architectures 10.2 Code-Scheduling Constraints 10.3 Basic-Block Scheduling 10.4 Global Code Scheduling 10.5 Software Pipelining 10.6 Summary of Chapter 10 10.7 References for Chapter 10 11 Optimizing for Parallelism and Locality 11.1 Basic Concepts 11.2 Matrix Multiply: An In-Depth Example 11.3 Iteration Spaces 11.4 Affine Array Indexes 11.5 Data Reuse 11.6 Array Data-Dependence Analysis 11.7 Finding Synchronization-Free Parallelism 11.8 Synchronization Between Parallel Loops 11.9 Pipelining 11.10 Locality Optimizations 11.11 Other Uses of Affine Transforms 11.12 Summary of Chapter 11 11.13 References for Chapter 11 12 Interprocedural Analysis 12.1 Basic Concepts 12.2 Why Interprocedural Analysis? 12.3 A Logical Representation of Data Flow 12.4 A Simple Pointer-Analysis Algorithm 12.5 Context-Insensitive Interprocedural Analysis 12.6 Context-Sensitive Pointer Analysis 12.7 Datalog Implementation by BDD's 12.8 Summary of Chapter 12 12.9 References for Chapter 12 A A Complete Front End A.1 The Source Language A.2 Main A.3 Lexical Analyzer A.4 Symbol Tables and Types A.5 Intermediate Code for Expressions A.6 Jumping Code for Boolean Expressions A.7 Intermediate Code for Statements A.8 Parser A.9 Creating the Front End B Finding Linearly Independent Solutions Index

8,437 citations

Journal ArticleDOI
01 May 2002
TL;DR: In this article, an object-oriented scripting interface to a mature density functional theory code is presented, which gives users a high-level, flexible handle on the code without rewriting the underlying number-crunching code.
Abstract: The authors have created an object-oriented scripting interface to a mature density functional theory code. The interface gives users a high-level, flexible handle on the code without rewriting the underlying number-crunching code. The authors also discuss the design issues and advantages of homogeneous interfaces.

1,231 citations

Book
01 Jan 1994
TL;DR: ROOM formally constrains the implementation to its architectural specification, and is based on the ROOM mode ling language which combines the object paradigm with mode ling abstractions devised specifically for distributed real-time software.
Abstract: The "architecture" of a software system refers to its highest-level modular decomposition and the interrelationship patterns between its modules. An architecture serves as a blueprint for implementation and also as the chief determinant of a system's ability evolve. Consequently, there is an increased interest in methods for specifying and validating software architectures. One such method is based on the ROOM mode ling language which combines the object paradigm with mode ling abstractions devised specifically for distributed real-time software. To overcome the treacherous "architectural decay" phenomenon, whereby, over time, software diverges increasingly from its specification, ROOM formally constrains the implementation to its architectural specification. This is achieved primarily through full automated code generation, a technique that is panicularly challenging in real-time applications where stringent performance and memory requirements are the norm.

1,173 citations

Journal ArticleDOI
TL;DR: This paper reports on the development and formal verification of CompCert, a compiler from Clight (a large subset of the C programming language) to PowerPC assembly code, using the Coq proof assistant both for programming the compiler and for proving its correctness.
Abstract: This paper reports on the development and formal verification (proof of semantic preservation) of CompCert, a compiler from Clight (a large subset of the C programming language) to PowerPC assembly code, using the Coq proof assistant both for programming the compiler and for proving its correctness. Such a verified compiler is useful in the context of critical software and its formal verification: the verification of the compiler guarantees that the safety properties proved on the source code hold for the executable compiled code as well.

1,124 citations

Journal ArticleDOI
TL;DR: The paper presents an efficient 88 line MATLAB code for topology optimization using the 99 line code presented by Sigmund as a starting point, and a considerable improvement in efficiency has been achieved, mainly by preallocating arrays and vectorizing loops.
Abstract: The paper presents an efficient 88 line MATLAB code for topology optimization. It has been developed using the 99 line code presented by Sigmund (Struct Multidisc Optim 21(2):120---127, 2001) as a starting point. The original code has been extended by a density filter, and a considerable improvement in efficiency has been achieved, mainly by preallocating arrays and vectorizing loops. A speed improvement with a factor of 100 is obtained for a benchmark example with 7,500 elements. Moreover, the length of the code has been reduced to a mere 88 lines. These improvements have been accomplished without sacrificing the readability of the code. The 88 line code can therefore be considered as a valuable successor to the 99 line code, providing a practical instrument that may help to ease the learning curve for those entering the field of topology optimization. The paper also discusses simple extensions of the basic code to include recent PDE-based and black-and-white projection filtering methods. The complete 88 line code is included as an appendix and can be downloaded from the web site www.topopt.dtu.dk .

998 citations


Network Information
Related Topics (5)
Software system
50.7K papers, 935K citations
89% related
Software construction
36.2K papers, 743.8K citations
89% related
Software development
73.8K papers, 1.4M citations
89% related
Scalability
50.9K papers, 931.6K citations
87% related
Cache
59.1K papers, 976.6K citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202391
2022207
2021270
2020429
2019527
2018534