scispace - formally typeset
Search or ask a question
Topic

Code refactoring

About: Code refactoring is a research topic. Over the lifetime, 4828 publications have been published within this topic receiving 96006 citations. The topic is also known as: refactoring & code refactoring.


Papers
More filters
Book
Martin Fowler1
01 Jan 1999
TL;DR: Almost every expert in Object-Oriented Development stresses the importance of iterative development, but how do you add function to the existing code base while still preserving its design integrity?
Abstract: Almost every expert in Object-Oriented Development stresses the importance of iterative development. As you proceed with the iterative development, you need to add function to the existing code base. If you are really lucky that code base is structured just right to support the new function while still preserving its design integrity. Of course most of the time we are not lucky, the code does not quite fit what we want to do. You could just add the function on top of the code base. But soon this leads to applying patch upon patch making your system more complex than it needs to be. This complexity leads to bugs, and cripples your productivity.

5,174 citations

Book
01 Nov 2002
TL;DR: Drive development with automated tests, a style of development called “Test-Driven Development” (TDD for short), which aims to dramatically reduce the defect density of code and make the subject of work crystal clear to all involved.
Abstract: From the Book: “Clean code that works” is Ron Jeffries’ pithy phrase. The goal is clean code that works, and for a whole bunch of reasons: Clean code that works is a predictable way to develop. You know when you are finished, without having to worry about a long bug trail.Clean code that works gives you a chance to learn all the lessons that the code has to teach you. If you only ever slap together the first thing you think of, you never have time to think of a second, better, thing. Clean code that works improves the lives of users of our software.Clean code that works lets your teammates count on you, and you on them.Writing clean code that works feels good.But how do you get to clean code that works? Many forces drive you away from clean code, and even code that works. Without taking too much counsel of our fears, here’s what we do—drive development with automated tests, a style of development called “Test-Driven Development” (TDD for short). In Test-Driven Development, you: Write new code only if you first have a failing automated test.Eliminate duplication. Two simple rules, but they generate complex individual and group behavior. Some of the technical implications are:You must design organically, with running code providing feedback between decisionsYou must write your own tests, since you can’t wait twenty times a day for someone else to write a testYour development environment must provide rapid response to small changesYour designs must consist of many highly cohesive, loosely coupled components, just to make testing easy The two rules imply an order to the tasks ofprogramming: 1. Red—write a little test that doesn’t work, perhaps doesn’t even compile at first 2. Green—make the test work quickly, committing whatever sins necessary in the process 3. Refactor—eliminate all the duplication created in just getting the test to work Red/green/refactor. The TDD’s mantra. Assuming for the moment that such a style is possible, it might be possible to dramatically reduce the defect density of code and make the subject of work crystal clear to all involved. If so, writing only code demanded by failing tests also has social implications: If the defect density can be reduced enough, QA can shift from reactive to pro-active workIf the number of nasty surprises can be reduced enough, project managers can estimate accurately enough to involve real customers in daily developmentIf the topics of technical conversations can be made clear enough, programmers can work in minute-by-minute collaboration instead of daily or weekly collaborationAgain, if the defect density can be reduced enough, we can have shippable software with new functionality every day, leading to new business relationships with customers So, the concept is simple, but what’s my motivation? Why would a programmer take on the additional work of writing automated tests? Why would a programmer work in tiny little steps when their mind is capable of great soaring swoops of design? Courage. Courage Test-driven development is a way of managing fear during programming. I don’t mean fear in a bad way, pow widdle prwogwammew needs a pacifiew, but fear in the legitimate, this-is-a-hard-problem-and-I-can’t-see-the-end-from-the-beginning sense. If pain is nature’s way of saying “Stop!”, fear is nature’s way of saying “Be careful.” Being careful is good, but fear has a host of other effects: Makes you tentativeMakes you want to communicate lessMakes you shy from feedbackMakes you grumpy None of these effects are helpful when programming, especially when programming something hard. So, how can you face a difficult situation and: Instead of being tentative, begin learning concretely as quickly as possible.Instead of clamming up, communicate more clearly.Instead of avoiding feedback, search out helpful, concrete feedback.(You’ll have to work on grumpiness on your own.) Imagine programming as turning a crank to pull a bucket of water from a well. When the bucket is small, a free-spinning crank is fine. When the bucket is big and full of water, you’re going to get tired before the bucket is all the way up. You need a ratchet mechanism to enable you to rest between bouts of cranking. The heavier the bucket, the closer the teeth need to be on the ratchet. The tests in test-driven development are the teeth of the ratchet. Once you get one test working, you know it is working, now and forever. You are one step closer to having everything working than you were when the test was broken. Now get the next one working, and the next, and the next. By analogy, the tougher the programming problem, the less ground should be covered by each test. Readers of Extreme Programming Explained will notice a difference in tone between XP and TDD. TDD isn’t an absolute like Extreme Programming. XP says, “Here are things you must be able to do to be prepared to evolve further.” TDD is a little fuzzier. TDD is an awareness of the gap between decision and feedback during programming, and techniques to control that gap. “What if I do a paper design for a week, then test-drive the code? Is that TDD?” Sure, it’s TDD. You were aware of the gap between decision and feedback and you controlled the gap deliberately. That said, most people who learn TDD find their programming practice changed for good. “Test Infected” is the phrase Erich Gamma coined to describe this shift. You might find yourself writing more tests earlier, and working in smaller steps than you ever dreamed would be sensible. On the other hand, some programmers learn TDD and go back to their earlier practices, reserving TDD for special occasions when ordinary programming isn’t making progress. There are certainly programming tasks that can’t be driven solely by tests (or at least, not yet). Security software and concurrency, for example, are two topics where TDD is not sufficient to mechanically demonstrate that the goals of the software have been met. Security relies on essentially defect-free code, true, but also on human judgement about the methods used to secure the software. Subtle concurrency problems can’t be reliably duplicated by running the code. Once you are finished reading this book, you should be ready to: Start simplyWrite automated testsRefactor to add design decisions one at a time This book is organized into three sections. An example of writing typical model code using TDD. The example is one I got from Ward Cunningham years ago, and have used many times since, multi-currency arithmetic. In it you will learn to write tests before code and grow a design organically.An example of testing more complicated logic, including reflection and exceptions, by developing a framework for automated testing. This example also serves to introduce you to the xUnit architecture that is at the heart of many programmer-oriented testing tools. In the second example you will learn to work in even smaller steps than in the first example, including the kind of self-referential hooha beloved of computer scientists.Patterns for TDD. Included are patterns for the deciding what tests to write, how to write tests using xUnit, and a greatest hits selection of the design patterns and refactorings used in the examples. I wrote the examples imagining a pair programming session. If you like looking at the map before wandering around, you may want to go straight to the patterns in Section 3 and use the examples as illustrations. If you prefer just wandering around and then looking at the map to see where you’ve been, try reading the examples through and refering to the patterns when you want more detail about a technique, then using the patterns as a reference. Several reviewers have commented they got the most out of the examples when they started up a programming environment and entered the code and ran the tests as they read. A note about the examples. Both examples, multi-currency calculation and a testing framework, appear simple. There are (and I have seen) complicated, ugly, messy ways of solving the same problems. I could have chosen one of those complicated, ugly, messy solutions to give the book an air of “reality.” However, my goal, and I hope your goal, is to write clean code that works. Before teeing off on the examples as being too simple, spend 15 seconds imagining a programming world in which all code was this clear and direct, where there were no complicated solutions, only apparently complicated problems begging for careful thought. TDD is a practice that can help you lead yourself to exactly that careful thought.

1,864 citations

Proceedings ArticleDOI
01 Nov 2017
TL;DR: The present document details the how, why and when to apply refactoring in computer systems that have been poorly designed, this in order to a better performance and maintenance of the constituent components.
Abstract: The present document contains the most relevant results obtained in the study of refactoring Mainly it addresses the general aspects of refactoring and the basic concepts that make it up, then it details the how, why and when to apply refactoring in computer systems that have been poorly designed, this in order to a better performance and maintenance of the constituent components Finally, it is emphasized the importance of the refactoring process as such in software development

1,676 citations

Journal ArticleDOI
TL;DR: This research is compared and discussed based on a number of different criteria: the refactoring activities that are supported, the specific techniques and formalisms that are used for supporting these activities, the types of software artifacts that are being refactored, the important issues that need to be taken into account when buildingRefactoring tool support, and the effect of refactors on the software process.
Abstract: We provide an extensive overview of existing research in the field of software refactoring. This research is compared and discussed based on a number of different criteria: the refactoring activities that are supported, the specific techniques and formalisms that are used for supporting these activities, the types of software artifacts that are being refactored, the important issues that need to be taken into account when building refactoring tool support, and the effect of refactoring on the software process. A running example is used to explain and illustrate the main concepts.

1,206 citations

01 Jan 1992
TL;DR: This thesis gives some conservative algorithms for determining whether a program satisfies constraints, and describes how to use this design information to refactor a program.
Abstract: This thesis defines a set of program restructuring operations (refactorings) that support the design, evolution and reuse of object-oriented application frameworks. The focus of the thesis is on automating the refactorings in a way that preserves the behavior of a program. The refactorings are defined to be behavior preserving, provided that their preconditions are met. Most of the refactorings are simple to implement and it is almost trivial to show that they are behavior preserving. However, for a few refactorings, one or more of their preconditions are in general undecidable. Fortunately, for some cases it can be determined whether these refactorings can be applied safely. Three of the most complex refactorings are defined in detail: generalizing the inheritance hierarchy, specializing the inheritance hierarchy and using aggregations to model the relationships among classes. These operations are decomposed into more primitive parts, and the power of these operations is discussed from the perspectives of automatability and usefulness in supporting design. Two design constraints needed in refactoring are class invariants and exclusive components. These constraints are needed to ensure that behavior is preserved across some refactorings. This thesis gives some conservative algorithms for determining whether a program satisfies these constraints, and describes how to use this design information to refactor a program.

1,193 citations


Network Information
Related Topics (5)
Software development
73.8K papers, 1.4M citations
94% related
Software construction
36.2K papers, 743.8K citations
92% related
Software system
50.7K papers, 935K citations
92% related
Web service
57.6K papers, 989K citations
85% related
Data structure
28.1K papers, 608.6K citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023138
2022351
2021255
2020314
2019291