scispace - formally typeset
Search or ask a question

Showing papers on "Cognitive decline published in 2018"


Journal ArticleDOI
TL;DR: An overview of inflammation in AD is provided and a detailed coverage of a number of microglia‐related signaling mechanisms that have been implicated in AD are reviewed.

1,088 citations


Journal ArticleDOI
TL;DR: The aging-induced up-regulation of reactive astrocytes genes was significantly reduced in mice lacking the microglial-secreted cytokines known to induce A1 reactiveAstrocyte formation, indicating that microglia promote astroCyte activation in aging.
Abstract: The decline of cognitive function occurs with aging, but the mechanisms responsible are unknown. Astrocytes instruct the formation, maturation, and elimination of synapses, and impairment of these functions has been implicated in many diseases. These findings raise the question of whether astrocyte dysfunction could contribute to cognitive decline in aging. We used the Bac-Trap method to perform RNA sequencing of astrocytes from different brain regions across the lifespan of the mouse. We found that astrocytes have region-specific transcriptional identities that change with age in a region-dependent manner. We validated our findings using fluorescence in situ hybridization and quantitative PCR. Detailed analysis of the differentially expressed genes in aging revealed that aged astrocytes take on a reactive phenotype of neuroinflammatory A1-like reactive astrocytes. Hippocampal and striatal astrocytes up-regulated a greater number of reactive astrocyte genes compared with cortical astrocytes. Moreover, aged brains formed many more A1 reactive astrocytes in response to the neuroinflammation inducer lipopolysaccharide. We found that the aging-induced up-regulation of reactive astrocyte genes was significantly reduced in mice lacking the microglial-secreted cytokines (IL-1α, TNF, and C1q) known to induce A1 reactive astrocyte formation, indicating that microglia promote astrocyte activation in aging. Since A1 reactive astrocytes lose the ability to carry out their normal functions, produce complement components, and release a toxic factor which kills neurons and oligodendrocytes, the aging-induced up-regulation of reactive genes by astrocytes could contribute to the cognitive decline in vulnerable brain regions in normal aging and contribute to the greater vulnerability of the aged brain to injury.

786 citations


Journal ArticleDOI
19 Sep 2018-Nature
TL;DR: In a mouse model of tau-dependent neurodegenerative disease, the clearance of senescent glial cells prevents the degeneration of cortical and hippocampal neurons and preserves cognitive function, suggesting that targeting senescent cells may provide a therapeutic avenue for the treatment of these pathologies.
Abstract: Cellular senescence, which is characterized by an irreversible cell-cycle arrest1 accompanied by a distinctive secretory phenotype2, can be induced through various intracellular and extracellular factors. Senescent cells that express the cell cycle inhibitory protein p16INK4A have been found to actively drive naturally occurring age-related tissue deterioration3,4 and contribute to several diseases associated with ageing, including atherosclerosis5 and osteoarthritis6. Various markers of senescence have been observed in patients with neurodegenerative diseases7–9; however, a role for senescent cells in the aetiology of these pathologies is unknown. Here we show a causal link between the accumulation of senescent cells and cognition-associated neuronal loss. We found that the MAPTP301SPS19 mouse model of tau-dependent neurodegenerative disease10 accumulates p16INK4A-positive senescent astrocytes and microglia. Clearance of these cells as they arise using INK-ATTAC transgenic mice prevents gliosis, hyperphosphorylation of both soluble and insoluble tau leading to neurofibrillary tangle deposition, and degeneration of cortical and hippocampal neurons, thus preserving cognitive function. Pharmacological intervention with a first-generation senolytic modulates tau aggregation. Collectively, these results show that senescent cells have a role in the initiation and progression of tau-mediated disease, and suggest that targeting senescent cells may provide a therapeutic avenue for the treatment of these pathologies. In a mouse model of tau-dependent neurodegenerative disease, the clearance of senescent glial cells prevents the degeneration of cortical and hippocampal neurons and preserves cognitive function.

708 citations


Journal ArticleDOI
TL;DR: Clinicians are provided with evidence to recommend that patients obtain both aerobic and resistance exercise of at least moderate intensity on as many days of the week as feasible, in line with current exercise guidelines, to improve cognitive function.
Abstract: Background Physical exercise is seen as a promising intervention to prevent or delay cognitive decline in individuals aged 50 years and older, yet the evidence from reviews is not conclusive. Objectives To determine if physical exercise is effective in improving cognitive function in this population. Design Systematic review with multilevel meta-analysis. Data sources Electronic databases Medline (PubMed), EMBASE (Scopus), PsychINFO and CENTRAL (Cochrane) from inception to November 2016. Eligibility criteria Randomised controlled trials of physical exercise interventions in community-dwelling adults older than 50 years, with an outcome measure of cognitive function. Results The search returned 12 820 records, of which 39 studies were included in the systematic review. Analysis of 333 dependent effect sizes from 36 studies showed that physical exercise improved cognitive function (0.29; 95% CI 0.17 to 0.41; p Conclusions Physical exercise improved cognitive function in the over 50s, regardless of the cognitive status of participants. To improve cognitive function, this meta-analysis provides clinicians with evidence to recommend that patients obtain both aerobic and resistance exercise of at least moderate intensity on as many days of the week as feasible, in line with current exercise guidelines.

703 citations


Journal ArticleDOI
25 Jul 2018-Nature
TL;DR: It is shown that meningeal lymphatic vessels drain macromolecules from the CNS (cerebrospinal and interstitial fluids) into the cervical lymph nodes in mice and improves brain perfusion and learning and memory performance.
Abstract: Ageing is a major risk factor for many neurological pathologies, but its mechanisms remain unclear. Unlike other tissues, the parenchyma of the central nervous system (CNS) lacks lymphatic vasculature and waste products are removed partly through a paravascular route. (Re)discovery and characterization of meningeal lymphatic vessels has prompted an assessment of their role in waste clearance from the CNS. Here we show that meningeal lymphatic vessels drain macromolecules from the CNS (cerebrospinal and interstitial fluids) into the cervical lymph nodes in mice. Impairment of meningeal lymphatic function slows paravascular influx of macromolecules into the brain and efflux of macromolecules from the interstitial fluid, and induces cognitive impairment in mice. Treatment of aged mice with vascular endothelial growth factor C enhances meningeal lymphatic drainage of macromolecules from the cerebrospinal fluid, improving brain perfusion and learning and memory performance. Disruption of meningeal lymphatic vessels in transgenic mouse models of Alzheimer’s disease promotes amyloid-β deposition in the meninges, which resembles human meningeal pathology, and aggravates parenchymal amyloid-β accumulation. Meningeal lymphatic dysfunction may be an aggravating factor in Alzheimer’s disease pathology and in age-associated cognitive decline. Thus, augmentation of meningeal lymphatic function might be a promising therapeutic target for preventing or delaying age-associated neurological diseases.

694 citations


Journal ArticleDOI
TL;DR: A better understanding of the role of antioxidants involved in redox modulation of inflammation would provide a useful approach for potential interventions, and subsequently promoting healthy longevity.
Abstract: Aging is the progressive loss of organ and tissue function over time. Growing older is positively linked to cognitive and biological degeneration such as physical frailty, psychological impairment, and cognitive decline. Oxidative stress is considered as an imbalance between pro- and antioxidant species, which results in molecular and cellular damage. Oxidative stress plays a crucial role in the development of age-related diseases. Emerging research evidence has suggested that antioxidant can control the autoxidation by interrupting the propagation of free radicals or by inhibiting the formation of free radicals and subsequently reduce oxidative stress, improve immune function, and increase healthy longevity. Indeed, oxidation damage is highly dependent on the inherited or acquired defects in enzymes involved in the redox-mediated signaling pathways. Therefore, the role of molecules with antioxidant activity that promote healthy aging and counteract oxidative stress is worth to discuss further. Of particular interest in this article, we highlighted the molecular mechanisms of antioxidants involved in the prevention of age-related diseases. Taken together, a better understanding of the role of antioxidants involved in redox modulation of inflammation would provide a useful approach for potential interventions, and subsequently promoting healthy longevity.

637 citations


Journal ArticleDOI
TL;DR: Age-related changes in cognitive ability are the focus of a growing field of research and the aim is to promote clarity in the field by agreeing upon consensual definitions for three widely discussed concepts: maintenance, compensation and reserve.
Abstract: Cognitive ageing research examines the cognitive abilities that are preserved and/or those that decline with advanced age. There is great individual variability in cognitive ageing trajectories. Some older adults show little decline in cognitive ability compared with young adults and are thus termed ‘optimally ageing’. By contrast, others exhibit substantial cognitive decline and may develop dementia. Human neuroimaging research has led to a number of important advances in our understanding of the neural mechanisms underlying these two outcomes. However, interpreting the age-related changes and differences in brain structure, activation and functional connectivity that this research reveals is an ongoing challenge. Ambiguous terminology is a major source of difficulty in this venture. Three terms in particular — compensation, maintenance and reserve — have been used in a number of different ways, and researchers continue to disagree about the kinds of evidence or patterns of results that are required to interpret findings related to these concepts. As such inconsistencies can impede progress in both theoretical and empirical research, here, we aim to clarify and propose consensual definitions of these terms. Age-related changes in cognitive ability are the focus of a growing field of research. Cabeza, Rajah and colleagues aim to promote clarity in the field by agreeing upon consensual definitions for three widely discussed concepts: maintenance, compensation and reserve.

636 citations


Journal ArticleDOI
TL;DR: Progress and study findings over the past five years are summarized and new directions for how these studies can inform on aging and AD in the future are discussed.
Abstract: Background The Religious Orders Study and Rush Memory and Aging Project are both ongoing longitudinal clinical-pathologic cohort studies of aging and Alzheimer's disease (AD). Objectives To summarize progress over the past five years and its implications for understanding neurodegenerative diseases. Methods Participants in both studies are older adults who enroll without dementia and agree to detailed longitudinal clinical evaluations and organ donation. The last review summarized findings through the end of 2011. Here we summarize progress and study findings over the past five years and discuss new directions for how these studies can inform on aging and AD in the future. Results We summarize 1) findings on the relation of neurobiology to clinical AD; 2) neurobiologic pathways linking risk factors to clinical AD; 3) non-cognitive AD phenotypes including motor function and decision making; 4) the development of a novel drug discovery platform. Conclusion Complexity at multiple levels needs to be understood and overcome to develop effective treatments and preventions for cognitive decline and AD dementia.

634 citations


Journal ArticleDOI
TL;DR: The evolving insights from studies on risk factors, brain imaging and neuropathology are reviewed, which provide important clues on mechanisms of both the subtle cognitive decrements and the more severe stages of cognitive dysfunction.
Abstract: Cognitive dysfunction is increasingly recognized as an important comorbidity of diabetes mellitus. Different stages of diabetes-associated cognitive dysfunction exist, each with different cognitive features, affected age groups and prognoses and probably with different underlying mechanisms. Relatively subtle, slowly progressive cognitive decrements occur in all age groups. More severe stages, particularly mild cognitive impairment and dementia, with progressive deficits, occur primarily in older individuals (>65 years of age). Patients in the latter group are the most relevant for patient management and are the focus of this Review. Here, we review the evolving insights from studies on risk factors, brain imaging and neuropathology, which provide important clues on mechanisms of both the subtle cognitive decrements and the more severe stages of cognitive dysfunction. In the majority of patients, the cognitive phenotype is probably defined by multiple aetiologies. Although both the risk of clinically diagnosed Alzheimer disease and that of vascular dementia is increased in association with diabetes, the cerebral burden of the prototypical pathologies of Alzheimer disease (such as neurofibrillary tangles and neuritic plaques) is not. A major challenge for researchers is to pinpoint from the spectrum of diabetes-related disease processes those that affect the brain and contribute to development of dementia beyond the pathologies of Alzheimer disease. Observations from experimental models can help to meet that challenge, but this requires further improving the synergy between experimental and clinical scientists. The development of targeted treatment and preventive strategies will therefore depend on these translational efforts.

576 citations


Journal ArticleDOI
TL;DR: In this article, a review of the current knowledge of lifestyle-related risk factors and results from novel trials aiming to prevent cognitive decline and dementia is presented, including the World Wide FINGERS network, which aims to harmonize studies on dementia prevention, generate high-quality scientific evidence and promote its implementation.
Abstract: Research into dementia prevention is of paramount importance if the dementia epidemic is to be halted. Observational studies have identified several potentially modifiable risk factors for dementia, including hypertension, dyslipidaemia and obesity at midlife, diabetes mellitus, smoking, physical inactivity, depression and low levels of education. Randomized clinical trials are needed that investigate whether interventions targeting these risk factors can reduce the risk of cognitive decline and dementia in elderly adults, but such trials are methodologically challenging. To date, most preventive interventions have been tested in small groups, have focused on a single lifestyle factor and have yielded negative or modest results. Given the multifactorial aetiology of dementia and late-onset Alzheimer disease, multidomain interventions that target several risk factors and mechanisms simultaneously might be necessary for an optimal preventive effect. In the past few years, three large multidomain trials (FINGER, MAPT and PreDIVA) have been completed. The FINGER trial showed that a multidomain lifestyle intervention can benefit cognition in elderly people with an elevated risk of dementia. The primary results from the other trials did not show a statistically significant benefit of preventive interventions, but additional analyses among participants at risk of dementia showed beneficial effects of intervention. Overall, results from these three trials suggest that targeting of preventive interventions to at-risk individuals is an effective strategy. This Review discusses the current knowledge of lifestyle-related risk factors and results from novel trials aiming to prevent cognitive decline and dementia. Global initiatives are presented, including the World Wide FINGERS network, which aims to harmonize studies on dementia prevention, generate high-quality scientific evidence and promote its implementation.

543 citations


Journal ArticleDOI
TL;DR: The cumulative evidence reviewed indicates sex-specific patterns of disease manifestation as well as sex differences in the rates of cognitive decline and brain atrophy, suggesting that sex is a crucial variable in disease heterogeneity.
Abstract: Alzheimer disease (AD) is characterized by wide heterogeneity in cognitive and behavioural syndromes, risk factors and pathophysiological mechanisms. Addressing this phenotypic variation will be crucial for the development of precise and effective therapeutics in AD. Sex-related differences in neural anatomy and function are starting to emerge, and sex might constitute an important factor for AD patient stratification and personalized treatment. Although the effects of sex on AD epidemiology are currently the subject of intense investigation, the notion of sex-specific clinicopathological AD phenotypes is largely unexplored. In this Review, we critically discuss the evidence for sex-related differences in AD symptomatology, progression, biomarkers, risk factor profiles and treatment. The cumulative evidence reviewed indicates sex-specific patterns of disease manifestation as well as sex differences in the rates of cognitive decline and brain atrophy, suggesting that sex is a crucial variable in disease heterogeneity. We discuss critical challenges and knowledge gaps in our current understanding. Elucidating sex differences in disease phenotypes will be instrumental in the development of a 'precision medicine' approach in AD, encompassing individual, multimodal, biomarker-driven and sex-sensitive strategies for prevention, detection, drug development and treatment.

Journal ArticleDOI
TL;DR: In this paper, the authors examined the effect of both cumulative and transitory exposures to air pollution for the same individuals over time on cognitive performance by matching a nationally representative longitudinal survey and air quality data in China according to the exact time and geographic locations of the cognitive tests.
Abstract: Significance Most of the population in developing countries live in places with unsafe air. Utilizing variations in transitory and cumulative air pollution exposures for the same individuals over time in China, we provide evidence that polluted air may impede cognitive ability as people become older, especially for less educated men. Cutting annual mean concentration of particulate matter smaller than 10 μm (PM10) in China to the Environmental Protection Agency’s standard (50 μg/m3) would move people from the median to the 63rd percentile (verbal test scores) and the 58th percentile (math test scores), respectively. The damage on the aging brain by air pollution likely imposes substantial health and economic costs, considering that cognitive functioning is critical for the elderly for both running daily errands and making high-stake decisions. This paper examines the effect of both cumulative and transitory exposures to air pollution for the same individuals over time on cognitive performance by matching a nationally representative longitudinal survey and air quality data in China according to the exact time and geographic locations of the cognitive tests. We find that long-term exposure to air pollution impedes cognitive performance in verbal and math tests. We provide evidence that the effect of air pollution on verbal tests becomes more pronounced as people age, especially for men and the less educated. The damage on the aging brain by air pollution likely imposes substantial health and economic costs, considering that cognitive functioning is critical for the elderly for both running daily errands and making high-stake decisions.

Journal ArticleDOI
TL;DR: It is found that alterations to astrocytes in aging create an environment permissive to synapse elimination and neuronal damage, potentially contributing to aging-associated cognitive decline.

Journal ArticleDOI
TL;DR: The working group recommends that ‘perioperative neurocognitive disorders’ be used as an overarching term for cognitive impairment identified in the preoperative or postoperative period as well as two major classification guidelines used outside of anaesthesia and surgery.
Abstract: Cognitive change affecting patients after anaesthesia and surgery has been recognised for more than 100 yr. Research into cognitive change after anaesthesia and surgery accelerated in the 1980s when multiple studies utilised detailed neuropsychological testing for assessment of cognitive change after cardiac surgery. This body of work consistently documented decline in cognitive function in elderly patients after anaesthesia and surgery, and cognitive changes have been identified up to 7.5 yr afterwards. Importantly, other studies have identified that the incidence of cognitive change is similar after non-cardiac surgery. Other than the inclusion of non-surgical control groups to calculate postoperative cognitive dysfunction, research into these cognitive changes in the perioperative period has been undertaken in isolation from cognitive studies in the general population. The aim of this work is to develop similar terminology to that used in cognitive classifications of the general population for use in investigations of cognitive changes after anaesthesia and surgery. A multispecialty working group followed a modified Delphi procedure with no prespecified number of rounds comprised of three face-to-face meetings followed by online editing of draft versions.Two major classification guidelines (Diagnostic and Statistical Manual for Mental Disorders, fifth edition [DSM-5] and National Institute for Aging and the Alzheimer Association [NIA-AA]) are used outside of anaesthesia and surgery, and may be useful for inclusion of biomarkers in research. For clinical purposes, it is recommended to use the DSM-5 nomenclature. The working group recommends that 'perioperative neurocognitive disorders' be used as an overarching term for cognitive impairment identified in the preoperative or postoperative period. This includes cognitive decline diagnosed before operation (described as neurocognitive disorder); any form of acute event (postoperative delirium) and cognitive decline diagnosed up to 30 days after the procedure (delayed neurocognitive recovery) and up to 12 months (postoperative neurocognitive disorder).

Journal ArticleDOI
TL;DR: The working group recommends that ‘perioperative neurocognitive disorders’ be used as an overarching term for cognitive impairment identified in the preoperative or postoperative period as well as two major classification guidelines used outside of anaesthesia and surgery.
Abstract: Cognitive change affecting patients after anaesthesia and surgery has been recognised for more than 100 yr. Research into cognitive change after anaesthesia and surgery accelerated in the 1980s when multiple studies utilised detailed neuropsychological testing for assessment of cognitive change after cardiac surgery. This body of work consistently documented decline in cognitive function in elderly patients after anaesthesia and surgery, and cognitive changes have been identified up to 7.5 yr afterwards. Importantly, other studies have identified that the incidence of cognitive change is similar after non-cardiac surgery. Other than the inclusion of non-surgical control groups to calculate postoperative cognitive dysfunction, research into these cognitive changes in the perioperative period has been undertaken in isolation from cognitive studies in the general population. The aim of this work is to develop similar terminology to that used in cognitive classifications of the general population for use in investigations of cognitive changes after anaesthesia and surgery. A multispecialty working group followed a modified Delphi procedure with no prespecified number of rounds comprised of three face-to-face meetings followed by online editing of draft versions. Two major classification guidelines [Diagnostic and Statistical Manual for Mental Disorders, fifth edition (DSM-5) and National Institute for Aging and the Alzheimer Association (NIA-AA)] are used outside of anaesthesia and surgery, and may be useful for inclusion of biomarkers in research. For clinical purposes, it is recommended to use the DSM-5 nomenclature. The working group recommends that 'perioperative neurocognitive disorders' be used as an overarching term for cognitive impairment identified in the preoperative or postoperative period. This includes cognitive decline diagnosed before operation (described as neurocognitive disorder); any form of acute event (postoperative delirium) and cognitive decline diagnosed up to 30 days after the procedure (delayed neurocognitive recovery) and up to 12 months (postoperative neurocognitive disorder).

Journal ArticleDOI
TL;DR: This group of MS researchers and clinicians with varied expertise took stock of the current state of the field, and identified several important practical and theoretical challenges, including key knowledge gaps and methodologic limitations related to understanding and measurement of cognitive deficits, and development of effective treatments.
Abstract: Cognitive decline is recognized as a prevalent and debilitating symptom of multiple sclerosis (MS), especially deficits in episodic memory and processing speed. The field aims to (1) incorporate cognitive assessment into standard clinical care and clinical trials, (2) utilize state-of-the-art neuroimaging to more thoroughly understand neural bases of cognitive deficits, and (3) develop effective, evidence-based, clinically feasible interventions to prevent or treat cognitive dysfunction, which are lacking. There are obstacles to these goals. Our group of MS researchers and clinicians with varied expertise took stock of the current state of the field, and we identify several important practical and theoretical challenges, including key knowledge gaps and methodologic limitations related to (1) understanding and measurement of cognitive deficits, (2) neuroimaging of neural bases and correlates of deficits, and (3) development of effective treatments. This is not a comprehensive review of the extensive literature, but instead a statement of guidelines and priorities for the field. For instance, we provide recommendations for improving the scientific basis and methodologic rigor for cognitive rehabilitation research. Toward this end, we call for multidisciplinary collaborations toward development of biologically based theoretical models of cognition capable of empirical validation and evidence-based refinement, providing the scientific context for effective treatment discovery.

Journal ArticleDOI
TL;DR: The construction and validation of a molecular network of the aging human frontal cortex is reported, constructed and validated from RNA sequence data from 478 individuals and identified genes that affect cognitive decline or neuropathology in Alzheimer's disease.
Abstract: There is a need for new therapeutic targets with which to prevent Alzheimer’s disease (AD), a major contributor to aging-related cognitive decline. Here we report the construction and validation of a molecular network of the aging human frontal cortex. Using RNA sequence data from 478 individuals, we first build a molecular network using modules of coexpressed genes and then relate these modules to AD and its neuropathologic and cognitive endophenotypes. We confirm these associations in two independent AD datasets. We also illustrate the use of the network in prioritizing amyloid- and cognition-associated genes for in vitro validation in human neurons and astrocytes. These analyses based on unique cohorts enable us to resolve the role of distinct cortical modules that have a direct effect on the accumulation of AD pathology from those that have a direct effect on cognitive decline, exemplifying a network approach to complex diseases.

Journal ArticleDOI
TL;DR: Current knowledge and future prospects of weight loss and malnutrition in the context of PD are presented to appeal clinicians and researchers to pay a closer attention to this phenomena and enable better management and therapeutic strategies in future clinical practice.
Abstract: Parkinson's Disease (PD) is currently considered a systemic neurodegenerative disease manifested with not only motor but also non-motor symptoms. In particular, weight loss and malnutrition, a set of frequently neglected non-motor symptoms, are indeed negatively associated with the life quality of PD patients. Moreover, comorbidity of weight loss and malnutrition may impact disease progression, giving rise to dyskinesia, cognitive decline and orthostatic hypotension, and even resulting in disability and mortality. Nevertheless, the underlying mechanism of weight loss and malnutrition in PD remains obscure and possibly involving multitudinous, exogenous or endogenous, factors. What is more, there still does not exist any weight loss and malnutrition appraision standards and management strategies. Given this, here in this review, we elaborate the weight loss and malnutrition study status in PD and summarize potential determinants and mechanisms as well. In conclusion, we present current knowledge and future prospects of weight loss and malnutrition in the context of PD, aiming to appeal clinicians and researchers to pay a closer attention to this phenomena and enable better management and therapeutic strategies in future clinical practice.

Journal ArticleDOI
TL;DR: Using four AD transgenic mouse models, it is found that NFTs, but not Aβ plaques, display a senescence‐like phenotype, which contributes to neurodegeneration.
Abstract: Tau protein accumulation is the most common pathology among degenerative brain diseases, including Alzheimer's disease (AD), progressive supranuclear palsy (PSP), traumatic brain injury (TBI), and over twenty others. Tau-containing neurofibrillary tangle (NFT) accumulation is the closest correlate with cognitive decline and cell loss (Arriagada, Growdon, Hedley-Whyte, & Hyman, ), yet mechanisms mediating tau toxicity are poorly understood. NFT formation does not induce apoptosis (de Calignon, Spires-Jones, Pitstick, Carlson, & Hyman, 2009), which suggests that secondary mechanisms are driving toxicity. Transcriptomic analyses of NFT-containing neurons microdissected from postmortem AD brain revealed an expression profile consistent with cellular senescence. This complex stress response induces aberrant cell cycle activity, adaptations to maintain survival, cellular remodeling, and metabolic dysfunction. Using four AD transgenic mouse models, we found that NFTs, but not Aβ plaques, display a senescence-like phenotype. Cdkn2a transcript level, a hallmark measure of senescence, directly correlated with brain atrophy and NFT burden in mice. This relationship extended to postmortem brain tissue from humans with PSP to indicate a phenomenon common to tau toxicity. Tau transgenic mice with late-stage pathology were treated with senolytics to remove senescent cells. Despite the advanced age and disease progression, MRI brain imaging and histopathological analyses indicated a reduction in total NFT density, neuron loss, and ventricular enlargement. Collectively, these findings indicate a strong association between the presence of NFTs and cellular senescence in the brain, which contributes to neurodegeneration. Given the prevalence of tau protein deposition among neurodegenerative diseases, these findings have broad implications for understanding, and potentially treating, dozens of brain diseases.

Journal ArticleDOI
TL;DR: The contribution of 9 neuropathologies to cognitive loss at an individual level is quantified and it is shown that Parkinson's disease is the most common cause of dementia at the population level.
Abstract: OBJECTIVE Mixed neuropathologies are the most common cause of dementia at the population level, but how different neuropathologies contribute to cognitive decline at the individual level remains unknown. We quantified the contribution of 9 neuropathologies to cognitive loss at an individual level. METHODS Participants (n = 1,079) came from 2 longitudinal clinical-pathologic studies of aging. All completed 2 + cognitive evaluations (maximum = 22), died, and underwent neuropathologic examinations to identify Alzheimer disease (AD), other neurodegenerative diseases, and vascular pathologies. Linear mixed models examined associations of neuropathologies with cognitive decline and estimated the proportion of cognitive loss accounted for by each neuropathology at a person-specific level. RESULTS Neuropathology was ubiquitous, with 94% of participants having 1+, 78% having 2+, 58% having 3+, and 35% having 4+. AD was most frequent (65%) but rarely occurred in isolation (9%). Remarkably, >230 different neuropathologic combinations were observed, each of which occurred in <6% of the cohort. The relative contributions of specific neuropathologies to cognitive loss varied widely across individuals. Although AD accounted for an average of about 50% of the observed cognitive loss, the proportion accounted for at the individual level ranged widely from 22% to 100%. Lewy bodies and hippocampal sclerosis also had potent effects, but again their impacts varied at the person-specific level. INTERPRETATION There is much greater heterogeneity in the comorbidity and cognitive impact of age-related neuropathologies than currently appreciated, suggesting an urgent need for novel therapeutic approaches that embrace the complexity of disease to combat cognitive decline in old age. Ann Neurol 2018;83:74-83.

Journal ArticleDOI
15 Feb 2018
TL;DR: The term vascular cognitive impairment (VCI) was introduced around the start of the new millennium and refers to the contribution of vascular pathology to any severity of cognitive impairment, ranging from subjective cognitive decline and mild cognitive impairment to dementia as mentioned in this paper.
Abstract: The term vascular cognitive impairment (VCI) was introduced around the start of the new millennium and refers to the contribution of vascular pathology to any severity of cognitive impairment, ranging from subjective cognitive decline and mild cognitive impairment to dementia. Although vascular pathology is common in elderly individuals with cognitive decline, pure vascular dementia (that is, dementia caused solely by vascular pathology) is uncommon. Indeed, most patients with vascular dementia also have other types of pathology, the most common of which is Alzheimer disease (specifically, the diffuse accumulation of amyloid-β plaques and neurofibrillary tangles composed of tau). At present, the main treatment for VCI is prevention by treating vascular diseases and other risk factors for VCI, such as hypertension and diabetes mellitus. Despite the current paucity of disease-modifying pharmacological treatments, we foresee that eventually, we might be able to target specific brain diseases to prevent cognitive decline and dementia.

Journal ArticleDOI
19 Dec 2018-Neuron
TL;DR: It is shown that the expression of C3 and C3a receptor (C3aR1) are positively correlated with cognitive decline and Braak staging in human AD brains and a crucial role for activation of the C3-C3 aR network in mediating neuroinflammation and tau pathology is demonstrated.

Journal ArticleDOI
TL;DR: It is pointed out that longitudinal studies with a life course approach are needed to gain further mechanistic insight on the processes that lead to functional decline with aging, and the role played by inflammation and environmental challenges.

Journal ArticleDOI
TL;DR: The role of fibrinogen in neurological diseases and traumatic brain injury has been investigated in this article, where selective drug targeting is proposed to suppress the damaging functions of the protein without affecting its beneficial effects in haemostasis.
Abstract: The blood coagulation protein fibrinogen is deposited in the brain in a wide range of neurological diseases and traumatic injuries with blood-brain barrier (BBB) disruption. Recent research has uncovered pleiotropic roles for fibrinogen in the activation of CNS inflammation, induction of scar formation in the brain, promotion of cognitive decline and inhibition of repair. Such diverse roles are possible in part because of the unique structure of fibrinogen, which contains multiple binding sites for cellular receptors and proteins expressed in the nervous system. The cellular and molecular mechanisms underlying the actions of fibrinogen are beginning to be elucidated, providing insight into its involvement in neurological diseases, such as multiple sclerosis, Alzheimer disease and traumatic CNS injury. Selective drug targeting to suppress the damaging functions of fibrinogen in the nervous system without affecting its beneficial effects in haemostasis opens a new fibrinogen therapeutics pipeline for neurological disease.

01 Jan 2018
TL;DR: The first large randomized controlled trials of multidomain lifestyle interventions to prevent cognitive impairment have been completed, and the results suggest that targeting interventions to individuals at risk of dementia is an effective strategy.
Abstract: Research into dementia prevention is of paramount importance if the dementia epidemic is to be halted. Observational studies have identified several potentially modifiable risk factors for dementia, including hypertension, dyslipidaemia and obesity at midlife, diabetes mellitus, smoking, physical inactivity, depression and low levels of education. Randomized clinical trials are needed that investigate whether interventions targeting these risk factors can reduce the risk of cognitive decline and dementia in elderly adults, but such trials are methodologically challenging. To date, most preventive interventions have been tested in small groups, have focused on a single lifestyle factor and have yielded negative or modest results. Given the multifactorial aetiology of dementia and late-onset Alzheimer disease, multidomain interventions that target several risk factors and mechanisms simultaneously might be necessary for an optimal preventive effect. In the past few years, three large multidomain trials (FINGER, MAPT and PreDIVA) have been completed. The FINGER trial showed that a multidomain lifestyle intervention can benefit cognition in elderly people with an elevated risk of dementia. The primary results from the other trials did not show a statistically significant benefit of preventive interventions, but additional analyses among participants at risk of dementia showed beneficial effects of intervention. Overall, results from these three trials suggest that targeting of preventive interventions to at-risk individuals is an effective strategy. This Review discusses the current knowledge of lifestyle-related risk factors and results from novel trials aiming to prevent cognitive decline and dementia. Global initiatives are presented, including the World Wide FINGERS network, which aims to harmonize studies on dementia prevention, generate high-quality scientific evidence and promote its implementation.

Journal ArticleDOI
TL;DR: This narrative review seeks to place POCD in the broad context of cognitive decline in the general population by redefined in terms of geriatric medicine constructs so that the short-, medium-, and long-term clinical and functional impact can be elucidated.
Abstract: Postoperative cognitive dysfunction (POCD) is an objectively measured decline in cognition postoperatively compared with preoperative function. POCD has been considered in the anesthetic and surgical literature in isolation of cognitive decline which is common in the elderly within the community and where it is labeled as mild cognitive impairment, neurocognitive disorder, or dementia. This narrative review seeks to place POCD in the broad context of cognitive decline in the general population. Cognitive change after anesthesia and surgery was described over 100 years ago, initially as delirium and dementia. The term POCD was applied in the 1980s to refer to cognitive decline assessed purely on the basis of a change in neuropsychological test results, but the construct has been the subject of great heterogeneity. The cause of POCD remains unknown. Increasing age, baseline cognitive impairment, and fewer years of education are consistently associated with POCD.In geriatric medicine, cognitive disorders defined and classified as mild cognitive impairment, neurocognitive disorder, and dementia have definitive clinical features. To identify the clinical impact of cognitive impairment associated with the perioperative period, POCD has recently been redefined in terms of these geriatric medicine constructs so that the short-, medium-, and long-term clinical and functional impact can be elucidated. As the aging population present in ever increasing numbers for surgery, many individuals with overt or subclinical dementia require anesthesia. Anesthesiologists must be equipped to understand and manage these patients.

Journal ArticleDOI
TL;DR: It is concluded that elevated plasma total homocysteine is a modifiable risk factor for development of cognitive decline, dementia, and Alzheimer’s disease in older persons.
Abstract: Identification of modifiable risk factors provides a crucial approach to the prevention of dementia. Nutritional or nutrient-dependent risk factors are especially important because dietary modifications or use of dietary supplements may lower the risk factor level. One such risk factor is a raised concentration of the biomarker plasma total homocysteine, which reflects the functional status of three B vitamins (folate, vitamins B12, B6). A group of experts reviewed literature evidence from the last 20 years. We here present a Consensus Statement, based on the Bradford Hill criteria, and conclude that elevated plasma total homocysteine is a modifiable risk factor for development of cognitive decline, dementia, and Alzheimer's disease in older persons. In a variety of clinical studies, the relative risk of dementia in elderly people for moderately raised homocysteine (within the normal range) ranges from 1.15 to 2.5, and the Population Attributable risk ranges from 4.3 to 31%. Intervention trials in elderly with cognitive impairment show that homocysteine-lowering treatment with B vitamins markedly slows the rate of whole and regional brain atrophy and also slows cognitive decline. The findings are consistent with moderately raised plasma total homocysteine (>11 μmol/L), which is common in the elderly, being one of the causes of age-related cognitive decline and dementia. Thus, the public health significance of raised tHcy in the elderly should not be underestimated, since it is easy, inexpensive, and safe to treat with B vitamins. Further trials are needed to see whether B vitamin treatment will slow, or prevent, conversion to dementia in people at risk of cognitive decline or dementia.

Journal ArticleDOI
TL;DR: The 2‐year Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) multidomain lifestyle intervention trial demonstrated beneficial effects on cognition.
Abstract: Introduction: The 2-year Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) multidomain lifestyle intervention trial (NCT01041989) demonstrated beneficial ...

Journal ArticleDOI
TL;DR: The higher risk of AD among blacks may stem from lower level of cognitive test performance persisting throughout the observation period rather than faster rate of late-life cognitive decline.
Abstract: Background:US-based studies have reported that older blacks perform worse than older whites on cognitive tests and have higher risk of Alzheimer disease dementia (AD). It is unclear whether these findings reflect differences in cognitive decline.Methods:The Chicago Health and Aging Project followed

Journal ArticleDOI
TL;DR: The association of plasma amyloid beta (Abeta)40, Abeta42, and total tau (tTau) with the presence of Alzheimer pathological changes in cognitively normal individuals with subjective cognitive decline (SCD) is investigated.
Abstract: Objective We investigated the association of plasma amyloid beta (Abeta)40, Abeta42, and total tau (tTau) with the presence of Alzheimer pathological changes in cognitively normal individuals with subjective cognitive decline (SCD).