scispace - formally typeset
Search or ask a question
Topic

Cognitive decline

About: Cognitive decline is a research topic. Over the lifetime, 29308 publications have been published within this topic receiving 1174689 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that the deficit in neurogenesis reflects alterations in the microenvironment that regulates progenitor-cell fate, as well as a defect in the proliferative capacity of the neural progenitors in the irradiated hippocampus.
Abstract: In both pediatric and adult patients, cranial radiation therapy causes a debilitating cognitive decline that is poorly understood and currently untreatable. This decline is characterized by hippocampal dysfunction, and seems to involve a radiation-induced decrease in postnatal hippocampal neurogenesis. Here we show that the deficit in neurogenesis reflects alterations in the microenvironment that regulates progenitor-cell fate, as well as a defect in the proliferative capacity of the neural progenitor-cell population. Not only is hippocampal neurogenesis ablated, but the remaining neural precursors adopt glial fates and transplants of non-irradiated neural precursor cells fail to differentiate into neurons in the irradiated hippocampus. The inhibition of neurogenesis is accompanied by marked alterations in the neurogenic microenvironment, including disruption of the microvascular angiogenesis associated with adult neurogenesis and a marked increase in the number and activation status of microglia within the neurogenic zone. These findings provide clear targets for future therapeutic interventions.

1,186 citations

Journal ArticleDOI
TL;DR: The available evidence suggests that activities can postpone decline, attenuate decline, or provide prosthetic benefit in the face of normative cognitive decline, while at the same time indicating that late-life cognitive changes can result in curtailment of activities.
Abstract: In this monograph, we ask whether various kinds of intellectual, physical, and social activities produce cognitive enrichment effects-that is, whether they improve cognitive performance at different points of the adult life span, with a particular emphasis on old age. We begin with a theoretical framework that emphasizes the potential of behavior to influence levels of cognitive functioning. According to this framework, the undeniable presence of age-related decline in cognition does not invalidate the view that behavior can enhance cognitive functioning. Instead, the course of normal aging shapes a zone of possible functioning, which reflects person-specific endowments and age-related constraints. Individuals influence whether they function in the higher or lower ranges of this zone by engaging in or refraining from beneficial intellectual, physical, and social activities. From this point of view, the potential for positive change, or plasticity, is maintained in adult cognition. It is an argument that is supported by newer research in neuroscience showing neural plasticity in various aspects of central nervous system functioning, neurochemistry, and architecture. This view of human potential contrasts with static conceptions of cognition in old age, according to which decline in abilities is fixed and individuals cannot slow its course. Furthermore, any understanding of cognition as it occurs in everyday life must make a distinction between basic cognitive mechanisms and skills (such as working-memory capacity) and the functional use of cognition to achieve goals in specific situations. In practice, knowledge and expertise are critical for effective functioning, and the available evidence suggests that older adults effectively employ specific knowledge and expertise and can gain new knowledge when it is required. We conclude that, on balance, the available evidence favors the hypothesis that maintaining an intellectually engaged and physically active lifestyle promotes successful cognitive aging. First, cognitive-training studies have demonstrated that older adults can improve cognitive functioning when provided with intensive training in strategies that promote thinking and remembering. The early training literature suggested little transfer of function from specifically trained skills to new cognitive tasks; learning was highly specific to the cognitive processes targeted by training. Recently, however, a new generation of studies suggests that providing structured experience in situations demanding executive coordination of skills-such as complex video games, task-switching paradigms, and divided attention tasks-train strategic control over cognition that does show transfer to different task environments. These studies suggest that there is considerable reserve potential in older adults' cognition that can be enhanced through training. Second, a considerable number of studies indicate that maintaining a lifestyle that is intellectually stimulating predicts better maintenance of cognitive skills and is associated with a reduced risk of developing Alzheimer's disease in late life. Our review focuses on longitudinal evidence of a connection between an active lifestyle and enhanced cognition, because such evidence admits fewer rival explanations of observed effects (or lack of effects) than does cross-sectional evidence. The longitudinal evidence consistently shows that engaging in intellectually stimulating activities is associated with better cognitive functioning at later points in time. Other studies show that meaningful social engagement is also predictive of better maintenance of cognitive functioning in old age. These longitudinal findings are also open to important rival explanations, but overall, the available evidence suggests that activities can postpone decline, attenuate decline, or provide prosthetic benefit in the face of normative cognitive decline, while at the same time indicating that late-life cognitive changes can result in curtailment of activities. Given the complexity of the dynamic reciprocal relationships between stimulating activities and cognitive function in old age, additional research will be needed to address the extent to which observed effects validate a causal influence of an intellectually engaged lifestyle on cognition. Nevertheless, the hypothesis that an active lifestyle that requires cognitive effort has long-term benefits for older adults' cognition is at least consistent with the available data. Furthermore, new intervention research that involves multimodal interventions focusing on goal-directed action requiring cognition (such as reading to children) and social interaction will help to address whether an active lifestyle enhances cognitive function. Third, there is a parallel literature suggesting that physical activity, and aerobic exercise in particular, enhances older adults' cognitive function. Unlike the literature on an active lifestyle, there is already an impressive array of work with humans and animal populations showing that exercise interventions have substantial benefits for cognitive function, particularly for aspects of fluid intelligence and executive function. Recent neuroscience research on this topic indicates that exercise has substantial effects on brain morphology and function, representing a plausible brain substrate for the observed effects of aerobic exercise and other activities on cognition. Our review identifies a number of areas where additional research is needed to address critical questions. For example, there is considerable epidemiological evidence that stress and chronic psychological distress are negatively associated with changes in cognition. In contrast, less is known about how positive attributes, such as self-efficacy, a sense of control, and a sense of meaning in life, might contribute to preservation of cognitive function in old age. It is well known that certain personality characteristics such as conscientiousness predict adherence to an exercise regimen, but we do not know whether these attributes are also relevant to predicting maintenance of cognitive function or effective compensation for cognitive decline when it occurs. Likewise, more information is needed on the factors that encourage maintenance of an active lifestyle in old age in the face of elevated risk for physiological decline, mechanical wear and tear on the body, and incidence of diseases with disabling consequences, and whether efforts to maintain an active lifestyle are associated with successful aging, both in terms of cognitive function and psychological and emotional well-being. We also discuss briefly some interesting issues for society and public policy regarding cognitive-enrichment effects. For example, should efforts to enhance cognitive function be included as part of a general prevention model for enhancing health and vitality in old age? We also comment on the recent trend of business marketing interventions claimed to build brain power and prevent age-related cognitive decline, and the desirability of direct research evidence to back claims of effectiveness for specific products.

1,179 citations

Book
25 Apr 2002
TL;DR: Findings from 5 large, randomized studies of the symptomatic treatment of probable and possible vascular dementia indicate that the presence of a cholinergic deficit is not required for the anticholinesterases to produce cognitive improvement, and so the cholin allergic hypothesis is neither necessary nor sufficient to explain the effects of these drugs.
Abstract: Cerebrovascular disease is the second most common cause of acquired cognitive impairment and dementia and contributes to cognitive decline in the neurodegenerative dementias. The current narrow definitions of vascular dementia should be broadened to recognise the important part cerebrovascular disease plays in several cognitive disorders, including the hereditary vascular dementias, multi-infarct dementia, post-stroke dementia, subcortical ischaemic vascular disease and dementia, mild cognitive impairment, and degenerative dementias (including Alzheimer's disease, frontotemporal dementia, and dementia with Lewy bodies). Here we review the current state of scientific knowledge on the subject of vascular brain burden. Important non-cognitive features include depression, apathy, and psychosis. We propose use of the term vascular cognitive impairment, which is characterised by a specific cognitive profile involving preserved memory with impairments in attentional and executive functioning. Diagnostic criteria have been proposed for some subtypes of vascular cognitive impairment, and there is a pressing need to validate and further refine these. Clinical trials in vascular cognitive impairment are in their infancy but support the value of therapeutic interventions for symptomatic treatment.

1,148 citations

Journal ArticleDOI
TL;DR: There is sufficiently strong evidence, from a population‐based perspective, to conclude that regular physical activity and management of cardiovascular risk factors reduce the risk of cognitive decline and may reduce therisk of dementia.
Abstract: An estimated 47 million people worldwide are living with dementia in 2015, and this number is projected to triple by 2050. In the absence of a disease-modifying treatment or cure, reducing the risk of developing dementia takes on added importance. In 2014, the World Dementia Council (WDC) requested the Alzheimer's Association evaluate and report on the state of the evidence on modifiable risk factors for cognitive decline and dementia. This report is a summary of the Association's evaluation, which was presented at the October 2014 WDC meeting. The Association believes there is sufficient evidence to support the link between several modifiable risk factors and a reduced risk for cognitive decline, and sufficient evidence to suggest that some modifiable risk factors may be associated with reduced risk of dementia. Specifically, the Association believes there is sufficiently strong evidence, from a population-based perspective, to conclude that regular physical activity and management of cardiovascular risk factors (diabetes, obesity, smoking, and hypertension) reduce the risk of cognitive decline and may reduce the risk of dementia. The Association also believes there is sufficiently strong evidence to conclude that a healthy diet and lifelong learning/cognitive training may also reduce the risk of cognitive decline.

1,146 citations

Journal ArticleDOI
25 Mar 2010-Nature
TL;DR: Advances in the biology of ageing in model organisms, together with molecular and systems-level studies of the brain, are beginning to shed light on these mechanisms and their potential roles in cognitive decline.
Abstract: During the past century, treatments for the diseases of youth and middle age have helped raise life expectancy significantly. However, cognitive decline has emerged as one of the greatest health threats of old age, with nearly 50% of adults over the age of 85 afflicted with Alzheimer's disease. Developing therapeutic interventions for such conditions demands a greater understanding of the processes underlying normal and pathological brain ageing. Recent advances in the biology of ageing in model organisms, together with molecular and systems-level studies of the brain, are beginning to shed light on these mechanisms and their potential roles in cognitive decline.

1,144 citations


Network Information
Related Topics (5)
Alzheimer's disease
21K papers, 1.7M citations
96% related
Dementia
72.2K papers, 2.7M citations
95% related
Prefrontal cortex
24K papers, 1.9M citations
84% related
Hippocampus
34.9K papers, 1.9M citations
84% related
Stroke
112.7K papers, 3.7M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023914
20221,895
20213,389
20202,982
20192,551
20182,022