scispace - formally typeset
Search or ask a question
Topic

Cognitive decline

About: Cognitive decline is a research topic. Over the lifetime, 29308 publications have been published within this topic receiving 1174689 citations.


Papers
More filters
01 Jan 2016
TL;DR: A randomized, double-blind, placebo-controlled trial of DHA supplementation in individuals with mild to moderate Alzheimer disease (MiniMental State Examination scores, 14-26) was conducted between November 2007 and May 2009 at 51 US clinical research sites of the Alzheimer's Disease Cooperative Study as discussed by the authors.
Abstract: Context Docosahexaenoic acid (DHA) is the most abundant long-chain polyunsaturated fatty acid in the brain. Epidemiological studies suggest that consumption of DHA is associated with a reduced incidence of Alzheimer disease. Animal studies demonstrate that oral intake of DHA reduces Alzheimer-like brain pathology. Objective To determine if supplementation with DHA slows cognitive and functional decline in individuals with Alzheimer disease. Design, Setting, and Patients A randomized, double-blind, placebo-controlled trial of DHA supplementation in individuals with mild to moderate Alzheimer disease (MiniMental State Examination scores, 14-26) was conducted between November 2007 and May 2009 at 51 US clinical research sites of the Alzheimer’s Disease Cooperative Study. Intervention Participants were randomly assigned to algal DHA at a dose of 2 g/d or to identical placebo (60% were assigned to DHA and 40% were assigned to placebo). Duration of treatment was 18 months. Main Outcome Measures Change in the cognitive subscale of the Alzheimer’s Disease Assessment Scale (ADAS-cog) and change in the Clinical Dementia Rating (CDR) sum of boxes. Rate of brain atrophy was also determined by volumetric magnetic resonance imaging in a subsample of participants (n=102).

557 citations

Journal ArticleDOI
TL;DR: Baseline FDG-PET and episodic memory predict conversion to AD, whereas p-tau181p/Aβ1-42 and, marginally,FDG- PET predict longitudinal cognitive decline.
Abstract: Objective: A variety of measurements have been individually linked to decline in mild cognitive impairment (MCI), but the identification of optimal markers for predicting disease progression remains unresolved. The goal of this study was to evaluate the prognostic ability of genetic, CSF, neuroimaging, and cognitive measurements obtained in the same participants. Methods: APOE e4 allele frequency, CSF proteins (Aβ 1-42 , total tau, hyperphosphorylated tau [p-tau 181p ]), glucose metabolism (FDG-PET), hippocampal volume, and episodic memory performance were evaluated at baseline in patients with amnestic MCI (n = 85), using data from a large multisite study (Alzheimer9s Disease Neuroimaging Initiative). Patients were classified as normal or abnormal on each predictor variable based on externally derived cutoffs, and then variables were evaluated as predictors of subsequent conversion to Alzheimer disease (AD) and cognitive decline (Alzheimer9s Disease Assessment Scale–Cognitive Subscale) during a variable follow-up period (1.9 ± 0.4 years). Results: Patients with MCI converted to AD at an annual rate of 17.2%. Subjects with MCI who had abnormal results on both FDG-PET and episodic memory were 11.7 times more likely to convert to AD than subjects who had normal results on both measures ( p ≤ 0.02). In addition, the CSF ratio p-tau 181p /Aβ 1-42 (β = 1.10 ± 0.53; p = 0.04) and, marginally, FDG-PET predicted cognitive decline. Conclusions: Baseline FDG-PET and episodic memory predict conversion to AD, whereas p-tau 181p /Aβ 1-42 and, marginally, FDG-PET predict longitudinal cognitive decline. Complementary information provided by these biomarkers may aid in future selection of patients for clinical trials or identification of patients likely to benefit from a therapeutic intervention.

556 citations

Journal ArticleDOI
TL;DR: It is demonstrated that, in both insulin-deficient rats and insulin-resistant mice, diabetes impairs hippocampus-dependent memory, perforant path synaptic plasticity and adult neurogenesis, and the adrenal steroid corticosterone contributes to these adverse effects.
Abstract: Many organ systems are adversely affected by diabetes, including the brain, which undergoes changes that may increase the risk of cognitive decline. Although diabetes influences the hypothalamic-pituitary-adrenal axis, the role of this neuroendocrine system in diabetes-induced cognitive dysfunction remains unexplored. Here we demonstrate that, in both insulin-deficient rats and insulin-resistant mice, diabetes impairs hippocampus-dependent memory, perforant path synaptic plasticity and adult neurogenesis, and the adrenal steroid corticosterone contributes to these adverse effects. Rats treated with streptozocin have reduced insulin and show hyperglycemia, increased corticosterone, and impairments in hippocampal neurogenesis, synaptic plasticity and learning. Similar deficits are observed in db/db mice, which are characterized by insulin resistance, elevated corticosterone and obesity. Changes in hippocampal plasticity and function in both models are reversed when normal physiological levels of corticosterone are maintained, suggesting that cognitive impairment in diabetes may result from glucocorticoid-mediated deficits in neurogenesis and synaptic plasticity.

556 citations

Journal ArticleDOI
TL;DR: It is reported that stress-level glucocorticoid administration increases Aβ formation by increasing steady-state levels of amyloid precursor protein (APP) and β-APP cleaving enzyme and augments tau accumulation, indicating that this hormone also accelerates the development of neurofibrillary tangles.
Abstract: Various environmental and genetic factors influence the onset and progression of Alzheimer’s disease (AD). Dysregulation of the hypothalamic–pituitary–adrenal (HPA) axis, which controls circulating levels of glucocorticoid hormones, occurs early in AD, resulting in increased cortisol levels. Disturbances of the HPA axis have been associated with memory impairments and may contribute to the cognitive decline that occurs in AD, although it is unknown whether such effects involve modulation of the amyloid β-peptide (Aβ) and tau. Using in vitro and in vivo experiments, we report that stress-level glucocorticoid administration increases Aβ formation by increasing steady-state levels of amyloid precursor protein (APP) and β-APP cleaving enzyme. Additionally, glucocorticoids augment tau accumulation, indicating that this hormone also accelerates the development of neurofibrillary tangles. These findings suggest that high levels of glucocorticoids, found in AD, are not merely a consequence of the disease process but rather play a central role in the development and progression of AD.

552 citations

Journal ArticleDOI
TL;DR: The fiber diameter distribution showed that primarily the thinner fibers were lost with a relative preservation of the thicker ones, and the marked loss of myelinated nerve fibers with age could explain some of the cognitive decline seen in the elderly.
Abstract: The white matter is the structure of the brain that declines most with age—almost 30%, but little is known about the age-effect on the fibers that constitute the white matter. In the present study, the total length of myelinated fibers was measured with a newly developed stereologic method. Specimens came from 36 normal Danes (18 males and 18 females) with an age ranging between 18 and 93 years. Samples were taken systematically and randomly from the white matter, and the biopsy specimens were randomly rotated before sectioning to avoid bias due to the anisotropic nature of nerve fibers. The fibers were counted at light microscopic level at approximately 10,000× magnification, and the diameter of each counted fiber was measured to get the diameter distribution. Males were found to have a total myelinated fiber length of 176,000 km at the age of 20 and 97,200 km at the age of 80, whereas the total length in females was 149,000 km at the age of 20 and 82,000 km at the age of 80. This finding corresponds to a 10% decrease per decade or a total decrease of 45% from the age of 20 to 80 years, and a sex difference of 16%. The fiber diameter distribution showed that primarily the thinner fibers were lost with a relative preservation of the thicker ones. The marked loss of myelinated nerve fibers with age could explain some of the cognitive decline seen in the elderly. J. Comp. Neurol. 462:144–152, 2003. © 2003 Wiley-Liss, Inc.

552 citations


Network Information
Related Topics (5)
Alzheimer's disease
21K papers, 1.7M citations
96% related
Dementia
72.2K papers, 2.7M citations
95% related
Prefrontal cortex
24K papers, 1.9M citations
84% related
Hippocampus
34.9K papers, 1.9M citations
84% related
Stroke
112.7K papers, 3.7M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023914
20221,895
20213,389
20202,982
20192,551
20182,022