scispace - formally typeset
Search or ask a question
Topic

Cognitive decline

About: Cognitive decline is a research topic. Over the lifetime, 29308 publications have been published within this topic receiving 1174689 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Results of this study suggest that IPI may serve as an effective cognitive intervention for age-related cognitive decline.
Abstract: This study evaluates transfer from domain-specific, sensorimotor training to cognitive abilities associated with executive function. We examined Individualized Piano Instruction (IPI) as a potential cognitive intervention to mitigate normal age-related cognitive decline in older adults. Thirty-one musically naive community-dwelling older adults (ages 60–85) were randomly assigned to either the experimental group (n = 16) or control group (n = 15). Neuropsychological assessments were administered at three time points: pre-training, following six months of intervention, and following a three-month delay. The experimental group significantly improved performance on the Trail Making Test and Digit Symbol measures as compared to healthy controls. Results of this study suggest that IPI may serve as an effective cognitive intervention for age-related cognitive decline.

354 citations

Journal ArticleDOI
TL;DR: Findings suggest that frailty and AD may share similar etiologies, and increasing frailty is associated with incident AD and the rate of cognitive decline in older persons.
Abstract: Objective:To assess the association between frailty and incident Alzheimer’s disease (AD) and cognitive decline. Frailty is common in older persons and associated with adverse health outcomes.Methods:Study subjects included 823 older persons without dementia who participated in the Rush Memory and A

354 citations

Journal ArticleDOI
TL;DR: In this paper, the authors identify β2-microglobulin (B2M), a component of major histocompatibility complex class 1 (MHC I) molecules, as a circulating factor that negatively regulates cognitive and regenerative function in the adult hippocampus.
Abstract: Aging drives cognitive and regenerative impairments in the adult brain, increasing susceptibility to neurodegenerative disorders in healthy individuals. Experiments using heterochronic parabiosis, in which the circulatory systems of young and old animals are joined, indicate that circulating pro-aging factors in old blood drive aging phenotypes in the brain. Here we identify β2-microglobulin (B2M), a component of major histocompatibility complex class 1 (MHC I) molecules, as a circulating factor that negatively regulates cognitive and regenerative function in the adult hippocampus in an age-dependent manner. B2M is elevated in the blood of aging humans and mice, and it is increased within the hippocampus of aged mice and young heterochronic parabionts. Exogenous B2M injected systemically, or locally in the hippocampus, impairs hippocampal-dependent cognitive function and neurogenesis in young mice. The negative effects of B2M and heterochronic parabiosis are, in part, mitigated in the hippocampus of young transporter associated with antigen processing 1 (Tap1)-deficient mice with reduced cell surface expression of MHC I. The absence of endogenous B2M expression abrogates age-related cognitive decline and enhances neurogenesis in aged mice. Our data indicate that systemic B2M accumulation in aging blood promotes age-related cognitive dysfunction and impairs neurogenesis, in part via MHC I, suggesting that B2M may be targeted therapeutically in old age.

354 citations

Journal ArticleDOI
TL;DR: In conclusion, intracerebroventricular delivery of antibodies to p40 significantly reduced the concentration of soluble Aβ species and reversed cognitive deficits in aged APPPS1 mice, suggesting that inhibition of the IL-12/IL-23 pathway may attenuate Alzheimer's disease pathology and cognitive deficits.
Abstract: The pathology of Alzheimer's disease has an inflammatory component that is characterized by upregulation of proinflammatory cytokines, particularly in response to amyloid-β (Aβ). Using the APPPS1 Alzheimer's disease mouse model, we found increased production of the common interleukin-12 (IL-12) and IL-23 subunit p40 by microglia. Genetic ablation of the IL-12/IL-23 signaling molecules p40, p35 or p19, in which deficiency of p40 or its receptor complex had the strongest effect, resulted in decreased cerebral amyloid load. Although deletion of IL-12/IL-23 signaling from the radiation-resistant glial compartment of the brain was most efficient in mitigating cerebral amyloidosis, peripheral administration of a neutralizing p40-specific antibody likewise resulted in a reduction of cerebral amyloid load in APPPS1 mice. Furthermore, intracerebroventricular delivery of antibodies to p40 significantly reduced the concentration of soluble Aβ species and reversed cognitive deficits in aged APPPS1 mice. The concentration of p40 was also increased in the cerebrospinal fluid of subjects with Alzheimer's disease, which suggests that inhibition of the IL-12/IL-23 pathway may attenuate Alzheimer's disease pathology and cognitive deficits.

354 citations

Journal ArticleDOI
TL;DR: Cerebrospinal fluid NFL concentration is increased by the early clinical stage of AD and is associated with cognitive deterioration and structural brain changes over time, which corroborates the contention that degeneration of large-caliber axons is an important feature of AD neurodegeneration.
Abstract: Importance The extent to which large-caliber axonal degeneration contributes to Alzheimer disease (AD) progression is unknown. Cerebrospinal fluid (CSF) neurofilament light (NFL) concentration is a general marker of damage to large-caliber myelinated axons. Objective To test whether CSF NFL concentration is associated with cognitive decline and imaging evidence of neurodegeneration and white matter change in AD. Design, Setting, and Participants A commercially available immunoassay was used to analyze CSF NFL concentration in a cohort of patients with AD (n = 95) or mild cognitive impairment (MCI) (n = 192) and in cognitively normal individuals (n = 110) from the Alzheimer’s Disease Neuroimaging Initiative. The study dates were January 2005 to December 2007. The NFL analysis was performed in November 2014. Main Outcomes and Measures Correlation was investigated among baseline CSF NFL concentration and longitudinal cognitive impairment, white matter change, and regional brain atrophy within each diagnostic group. Results Cerebrospinal fluid NFL concentration (median [interquartile range]) was higher in the AD dementia group (1479 [1134-1842] pg/mL), stable MCI group (no progression to AD during follow-up; 1182 [923-1687] pg/mL), and progressive MCI group (MCI with progression to AD dementia during follow-up; 1336 [1061-1693] pg/mL) compared with control participants (1047 [809-1265] pg/mL) ( P P = .01). In the MCI group, a higher CSF NFL concentration was associated with faster brain atrophy over time as measured by changes in whole-brain volume (β = −4177, P = .003), ventricular volume (β = 1835, P P P P P Conclusions and Relevance Cerebrospinal fluid NFL concentration is increased by the early clinical stage of AD and is associated with cognitive deterioration and structural brain changes over time. This finding corroborates the contention that degeneration of large-caliber axons is an important feature of AD neurodegeneration.

353 citations


Network Information
Related Topics (5)
Alzheimer's disease
21K papers, 1.7M citations
96% related
Dementia
72.2K papers, 2.7M citations
95% related
Prefrontal cortex
24K papers, 1.9M citations
84% related
Hippocampus
34.9K papers, 1.9M citations
84% related
Stroke
112.7K papers, 3.7M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023914
20221,895
20213,389
20202,982
20192,551
20182,022