scispace - formally typeset
Search or ask a question
Topic

Cograph

About: Cograph is a research topic. Over the lifetime, 4430 publications have been published within this topic receiving 116968 citations.


Papers
More filters
Book
01 Jan 2009
TL;DR: The Laplacian of a Graph and Cuts and Flows are compared to the Rank Polynomial.
Abstract: Graphs.- Groups.- Transitive Graphs.- Arc-Transitive Graphs.- Generalized Polygons and Moore Graphs.- Homomorphisms.- Kneser Graphs.- Matrix Theory.- Interlacing.- Strongly Regular Graphs.- Two-Graphs.- Line Graphs and Eigenvalues.- The Laplacian of a Graph.- Cuts and Flows.- The Rank Polynomial.- Knots.- Knots and Eulerian Cycles.- Glossary of Symbols.- Index.

8,307 citations

Book
14 Nov 1995
TL;DR: In this article, the authors introduce the concept of graph coloring and propose a graph coloring algorithm based on the Eulers formula for k-chromatic graphs, which can be seen as a special case of the graph coloring problem.
Abstract: 1. Fundamental Concepts. Definitions and examples. Paths and proofs. Vertex degrees and counting. Degrees and algorithmic proof. 2. Trees and Distance. Basic properties. Spanning trees and enumeration. Optimization and trees. Eulerian graphs and digraphs. 3. Matchings and Factors. Matchings in bipartite graphs. Applications and algorithms. Matchings in general graphs. 4. Connectivity and Paths. Cuts and connectivity. k-connected graphs. Network flow problems. 5. Graph Coloring. Vertex colorings and upper bounds. Structure of k-chromatic graphs. Enumerative aspects. 6. Edges and Cycles. Line graphs and edge-coloring. Hamiltonian cycles. Complexity. 7. Planar Graphs. Embeddings and Eulers formula. Characterization of planar graphs. Parameters of planarity. 8. Additional Topics. Perfect graphs. Matroids. Ramsey theory. More extremal problems. Random graphs. Eigenvalues of graphs. Glossary of Terms. Glossary of Notation. References. Author Index. Subject Index.

7,126 citations

MonographDOI
16 May 1974
TL;DR: In this article, the authors introduce algebraic graph theory and show that the spectrum of a graph can be modelled as a graph graph, and the spectrum can be represented as a set of connected spanning trees.
Abstract: 1. Introduction to algebraic graph theory Part I. Linear Algebra in Graphic Thoery: 2. The spectrum of a graph 3. Regular graphs and line graphs 4. Cycles and cuts 5. Spanning trees and associated structures 6. The tree-number 7. Determinant expansions 8. Vertex-partitions and the spectrum Part II. Colouring Problems: 9. The chromatic polynomial 10. Subgraph expansions 11. The multiplicative expansion 12. The induced subgraph expansion 13. The Tutte polynomial 14. Chromatic polynomials and spanning trees Part III. Symmetry and Regularity: 15. Automorphisms of graphs 16. Vertex-transitive graphs 17. Symmetric graphs 18. Symmetric graphs of degree three 19. The covering graph construction 20. Distance-transitive graphs 21. Feasibility of intersection arrays 22. Imprimitivity 23. Minimal regular graphs with given girth References Index.

2,924 citations

Journal ArticleDOI
TL;DR: An invariant of graphs called the tree-width is introduced, and used to obtain a polynomially bounded algorithm to test if a graph has a subgraph contractible to H, where H is any fixed planar graph.

1,726 citations

Journal ArticleDOI
TL;DR: A family of efficient kernels for large graphs with discrete node labels based on the Weisfeiler-Lehman test of isomorphism on graphs that outperform state-of-the-art graph kernels on several graph classification benchmark data sets in terms of accuracy and runtime.
Abstract: In this article, we propose a family of efficient kernels for large graphs with discrete node labels. Key to our method is a rapid feature extraction scheme based on the Weisfeiler-Lehman test of isomorphism on graphs. It maps the original graph to a sequence of graphs, whose node attributes capture topological and label information. A family of kernels can be defined based on this Weisfeiler-Lehman sequence of graphs, including a highly efficient kernel comparing subtree-like patterns. Its runtime scales only linearly in the number of edges of the graphs and the length of the Weisfeiler-Lehman graph sequence. In our experimental evaluation, our kernels outperform state-of-the-art graph kernels on several graph classification benchmark data sets in terms of accuracy and runtime. Our kernels open the door to large-scale applications of graph kernels in various disciplines such as computational biology and social network analysis.

1,552 citations


Network Information
Related Topics (5)
Indifference graph
10.8K papers, 287.9K citations
95% related
Chordal graph
12.8K papers, 314.2K citations
94% related
Line graph
11.5K papers, 304.1K citations
91% related
Vertex (geometry)
18.7K papers, 294.2K citations
88% related
Time complexity
36K papers, 879.5K citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202332
202279
202121
202020
201922
201847