scispace - formally typeset
Search or ask a question
Topic

Coherent anti-Stokes Raman spectroscopy

About: Coherent anti-Stokes Raman spectroscopy is a research topic. Over the lifetime, 9005 publications have been published within this topic receiving 267062 citations. The topic is also known as: Coherent Stokes Raman spectroscopy & Coherent anti-Stokes Raman scattering spectroscopy.


Papers
More filters
Journal ArticleDOI
21 Feb 1997-Science
TL;DR: In this article, surface-enhanced Raman scattering was used to detect single molecules and single nanoparticles at room temperature with the use of surface enhanced Raman, and the intrinsic Raman enhancement factors were on the order of 10 14 to 10 15, much larger than the ensemble-averaged values derived from conventional measurements.
Abstract: Optical detection and spectroscopy of single molecules and single nanoparticles have been achieved at room temperature with the use of surface-enhanced Raman scattering. Individual silver colloidal nanoparticles were screened from a large heterogeneous population for special size-dependent properties and were then used to amplify the spectroscopic signatures of adsorbed molecules. For single rhodamine 6G molecules adsorbed on the selected nanoparticles, the intrinsic Raman enhancement factors were on the order of 10 14 to 10 15 , much larger than the ensemble-averaged values derived from conventional measurements. This enormous enhancement leads to vibrational Raman signals that are more intense and more stable than single-molecule fluorescence.

9,609 citations

Journal ArticleDOI
TL;DR: In this article, the authors focus on the origin of the D and G peaks and the second order of D peak and show that the G and 2 D Raman peaks change in shape, position and relative intensity with number of graphene layers.

6,496 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the first-order and double resonance Raman scattering mechanisms in graphene, which give rise to the most prominent Raman features and give special emphasis to the possibility of using Raman spectroscopy to distinguish a monolayer from few-layer graphene stacked in the Bernal configuration.

4,945 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that only the Raman frequencies of E 1 and A 1g peaks vary monotonously with the layer number of ultrathin Molybdenum disulfi de (MoS 2 ).
Abstract: Molybdenum disulfi de (MoS 2 ) is systematically studied using Raman spectroscopy with ultraviolet and visible laser lines. It is shown that only the Raman frequencies of E 1 and A1g peaks vary monotonously with the layer number of ultrathin MoS 2 fl akes, while intensities or widths of the peaks vary arbitrarily. The coupling between electronic transitions and phonons are found to become weaker when the layer number of MoS 2 decreases, attributed to the increased electronic transition energies or elongated intralayer atomic bonds in ultrathin MoS 2 . The asymmetric Raman peak at 454 cm − 1 , which has been regarded as the overtone of longitudinal optical M phonons in bulk MoS 2 , is actually a combinational band involving a longitudinal acoustic mode (LA(M)) and an optical mode ( A2u ). Our fi ndings suggest a clear evolution of the coupling between electronic transition and phonon when MoS 2 is scaled down from three- to two-dimensional geometry.

3,375 citations

Journal ArticleDOI
TL;DR: In this paper, the basic experimental facts and the essential features of the mechanisms which have been proposed to account for the observations have been reviewed, including surface-enhanced Raman scattering (SERS) from single particles and single molecules.
Abstract: We present an introduction to surface-enhanced Raman scattering (SERS) which reviews the basic experimental facts and the essential features of the mechanisms which have been proposed to account for the observations. We then review very recent fundamental developments which include: SERS from single particles and single molecules; SERS from fractal clusters and surfaces; and new insights into the chemical enhancement mechanism of SERS.

3,292 citations


Network Information
Related Topics (5)
Raman spectroscopy
122.6K papers, 2.8M citations
90% related
Quantum dot
76.7K papers, 1.9M citations
88% related
Excited state
102.2K papers, 2.2M citations
87% related
Band gap
86.8K papers, 2.2M citations
86% related
Electron
111.1K papers, 2.1M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202325
202283
20218
202013
20197
201813