scispace - formally typeset
Search or ask a question
Topic

Coherent information

About: Coherent information is a research topic. Over the lifetime, 1225 publications have been published within this topic receiving 46672 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This work defines coherent communication in terms of a simple primitive, shows it is equivalent to the ability to send a classical message with a unitary or isometric operation, and uses it to relate other resources in quantum information theory.
Abstract: We define coherent communication in terms of a simple primitive, show it is equivalent to the ability to send a classical message with a unitary or isometric operation, and use it to relate other resources in quantum information theory. Using coherent communication, we are able to generalize superdense coding to prepare arbitrary quantum states instead of only classical messages. We also derive single-letter formulas for the classical and quantum capacities of a bipartite unitary gate assisted by an arbitrary fixed amount of entanglement per use.

91 citations

Posted Content
TL;DR: In this article, the authors discuss how magnonic systems can be integrated and entangled with quantum platforms including cavity photons, superconducting qubits, nitrogen-vacancy centers and phonons for coherent information transfer and collaborative information processing.
Abstract: Spintronics and quantum information science are two promising candidates for innovating information processing technologies. The combination of these two fields enables us to build solid-state platforms for studying quantum phenomena and for realizing multi-functional quantum tasks. For a long time, however, the intersection of these two fields was limited. This situation has changed significantly over the last few years because of the remarkable progress in coding and processing information using magnons. On the other hand, significant advances in understanding the entanglement of quasi-particles and in designing high-quality qubits and photonic cavities for quantum information processing provide physical platforms to integrate magnons with quantum systems. From these endeavours, the highly interdisciplinary field of quantum magnonics emerges, which combines spintronics, quantum optics and quantum information science.Here, we give an overview of the recent developments concerning the quantum states of magnons and their hybridization with mature quantum platforms. First, we review the basic concepts of magnons and quantum entanglement and discuss the generation and manipulation of quantum states of magnons, such as single-magnon states, squeezed states and quantum many-body states including Bose-Einstein condensation and the resulting spin superfluidity. We discuss how magnonic systems can be integrated and entangled with quantum platforms including cavity photons, superconducting qubits, nitrogen-vacancy centers, and phonons for coherent information transfer and collaborative information processing. The implications of these hybrid quantum systems for non-Hermitian physics and parity-time symmetry are highlighted, together with applications in quantum memories and high-precision measurements. Finally, we present an outlook on the opportunities in quantum magnonics.

90 citations

Journal ArticleDOI
TL;DR: This paper examines how many-qubit (or many-spin) environments can store information about a single system and shows that randomly chosen states of the environment almost always encode the information so that an observer must capture a majority of the Environment to deduce the system’s state.
Abstract: As quantum information science approaches the goal of constructing quantum computers, understanding loss of information through decoherence becomes increasingly important. The information about a system that can be obtained from its environment can facilitate quantum control and error correction. Moreover, observers gain most of their information indirectly, by monitoring (primarily photon) environments of the “objects of interest.” Exactly how this information is inscribed in the environment is essential for the emergence of “the classical” from the quantum substrate. In this paper, we examine how many-qubit (or many-spin) environments can store information about a single system. The information lost to the environment can be stored redundantly, or it can be encoded in entangled modes of the environment. We go on to show that randomly chosen states of the environment almost always encode the information so that an observer must capture a majority of the environment to deduce the system’s state. Conversely, in the states produced by a typical decoherence process, information about a particular observable of the system is stored redundantly. This selective proliferation of “the fittest information” (known as Quantum Darwinism) plays a key role in choosing the preferred, effectively classical observables of macroscopic systems. The developing appreciation that the environment functions not just as a garbage dump, but as a communication channel, is extending our understanding of the environment’s role in the quantum-classical transition beyond the traditional paradigm of decoherence.

89 citations

Journal ArticleDOI
TL;DR: Even such hazy environments eventually reveal the state of the system, although now the intercepted environment fragment must be larger by approximately (1-h)(-1) to gain the same information about the system.
Abstract: Quantum Darwinism recognizes that we---the observers---acquire our information about the ``systems of interest'' indirectly from their imprints on the environment. Here, we show that information about a system can be acquired from a mixed-state, or hazy, environment, but the storage capacity of an environment fragment is suppressed by its initial entropy. In the case of good decoherence, the mutual information between the system and the fragment is given solely by the fragment's entropy increase. For fairly mixed environments, this means a reduction by a factor $1\ensuremath{-}h$, where $h$ is the haziness of the environment, i.e., the initial entropy of an environment qubit. Thus, even such hazy environments eventually reveal the state of the system, although now the intercepted environment fragment must be larger by $\ensuremath{\sim}(1\ensuremath{-}h{)}^{\ensuremath{-}1}$ to gain the same information about the system.

89 citations

Journal ArticleDOI
TL;DR: It is said that a state is faithful when acting with a channel on one of the two quantum systems; the output state carries complete information about the channel.
Abstract: We introduce a novel property of bipartite quantum states, which we call faithfulness, and we say that a state is faithful when acting with a channel on one of the two quantum systems; the output state carries complete information about the channel. The concept of faithfulness can also be extended to sets of states, when the output states altogether carry a complete imprinting of the channel. Measures of degrees of faithfulness are proposed.

88 citations


Network Information
Related Topics (5)
Quantum information
22.7K papers, 911.3K citations
88% related
Open quantum system
20.4K papers, 924.6K citations
87% related
Quantum computer
30K papers, 907.2K citations
86% related
Quantum entanglement
39.5K papers, 1M citations
85% related
Quantum
60K papers, 1.2M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20234
202211
202122
202017
201923
201818