scispace - formally typeset
Search or ask a question
Topic

Coherent potential approximation

About: Coherent potential approximation is a research topic. Over the lifetime, 1930 publications have been published within this topic receiving 36805 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Its implementation on the basis of the fully relativistic Korringa-Kohn-Rostoker band structure method together with the Coherent Potential Approximation (CPA) alloy theory allows application to a wide range of situations.
Abstract: A Kubo-Greenwood-like equation for the Gilbert damping parameter α is presented that is based on the linear response formalism. Its implementation using the fully relativistic Korringa-Kohn-Rostoker band structure method in combination with coherent potential approximation alloy theory allows it to be applied to a wide range of situations. This is demonstrated with results obtained for the bcc alloy system Fe1−xCox as well as for a series of alloys of Permalloy with 5d transition metals. To account for the thermal displacements of atoms as a scattering mechanism, an alloy-analogy model is introduced. The corresponding calculations for Ni correctly describe the rapid change of α when small amounts of substitutional Cu are introduced.

126 citations

Journal ArticleDOI
TL;DR: In this paper, the electronic structure and spectroscopic properties were calculated using the full relativistic Korringa-Kohn-Rostocker method with coherent potential approximation to account for the random distribution of Cr and Fe atoms as well as random disorder.
Abstract: Quaternary Heusler alloys Co2Cr1 xFexAl with varying Cr to Fe ratio x were investigated experimentally and theoretically. The electronic structure and spectroscopic properties were calculated using the full relativistic Korringa-Kohn-Rostocker method with coherent potential approximation to account for the random distribution of Cr and Fe atoms as well as random disorder. Magnetic effects are included by the use of spin dependent potentials in the local spin density approximation. Magnetic circular dichroism in X-ray absorption was measured at the L2,3 edges of Co, Fe, and Cr of the pure compounds and the x = 0.4 alloy in order to determine element specific magnetic moments. Calculations and measurements show an increase of the magnetic moments with increasing iron content. Resonant (560eV - 800eV) soft X-ray as well as high resolution - high energy (� 3.5keV) hard X-ray photo emission was used to probe the density of the occupied states in Co2Cr0.6Fe0.4Al.

123 citations

Journal ArticleDOI
TL;DR: In this paper, a systematic study for the materials design of III-V and II-VI compound-based ferromagnetic diluted magnetic semiconductors is given based on ab initio calculations within the local spin density approximation.
Abstract: A systematic study for the materials design of III–V and II–VI compound-based ferromagnetic diluted magnetic semiconductors is given based on ab initio calculations within the local spin density approximation. The electronic structures of 3d-transition-metal-atom-doped GaN and Mn-doped InN, InP, InAs, InSb, GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs and AlSb were calculated by the Korringa–Kohn–Rostoker method combined with the coherent potential approximation. It is found that the ferromagnetic ground states are readily achievable in V-, Cr- or Mn-doped GaN without any additional carrier doping treatments, and that InN is the most promising candidate for high-TC ferromagnet. A simple explanation of the systematic behavior of the magnetic states in III–V and II–VI compound-based diluted magnetic semiconductors is also given. It is also shown that V or Cr-doped ZnS, ZnSe, and ZnTe are ferromagnetic without p- or n-type doping treatment. However, Mn-, Fe-, Co- or Ni-doped ZnS, ZnSe and ZnTe are spin-glass states. V-, Cr-, Fe-, Co-, Ni-doped ZnO without any doping and Mn-doped ZnO with p-type hole doping all shows half-metallic transparent ferromagnetism.

122 citations

Journal ArticleDOI
TL;DR: In this paper, structural and electron transport properties of Se-and Te-doped CoSb 3 skutterudites in relation to results of electronic structure calculations performed for this system were presented.

121 citations

Journal ArticleDOI
TL;DR: In this paper, a simple parametrization of the screened Coulomb interactions for the ordinary single-site methods, including the generalized perturbation method, is presented, which allows one to obtain quantitatively accurate effective interactions in this system.
Abstract: A quantitative description of the configurational part of the total energy of metallic alloys with substantial atomic size difference cannot be achieved in the atomic-sphere approximation: It needs to be corrected at least for the multipole-moment interactions in the Madelung part of the one-electron potential and energy. In the case of a random alloy such interactions can be accounted for only by lifting the atomic-sphere and single-site approximations, in order to include the polarization due to local environment effects. Nevertheless, a simple parametrization of the screened Coulomb interactions for the ordinary single-site methods, including the generalized perturbation method, is still possible. We obtained such a parametrization for bulk and surface NiPt alloys, which allows one to obtain quantitatively accurate effective interactions in this system.

115 citations


Network Information
Related Topics (5)
Magnetization
107.8K papers, 1.9M citations
91% related
Superconductivity
71.9K papers, 1.3M citations
90% related
Band gap
86.8K papers, 2.2M citations
87% related
Ground state
70K papers, 1.5M citations
85% related
Phase transition
82.8K papers, 1.6M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20234
202222
202127
202030
201930
201840