scispace - formally typeset
Search or ask a question
Topic

Coherent states

About: Coherent states is a research topic. Over the lifetime, 11895 publications have been published within this topic receiving 230451 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the photon statistics of arbitrary fields in fully quantum-mechanical terms are discussed, and a general method of representing the density operator for the field is discussed as well as a simple formulation of a superposition law for photon fields.
Abstract: Methods are developed for discussing the photon statistics of arbitrary fields in fully quantum-mechanical terms. In order to keep the classical limit of quantum electrodynamics plainly in view, extensive use is made of the coherent states of the field. These states, which reduce the field correlation functions to factorized forms, are shown to offer a convenient basis for the description of fields of all types. Although they are not orthogonal to one another, the coherent states form a complete set. It is shown that any quantum state of the field may be expanded in terms of them in a unique way. Expansions are also developed for arbitrary operators in terms of products of the coherent state vectors. These expansions are discussed as a general method of representing the density operator for the field. A particular form is exhibited for the density operator which makes it possible to carry out many quantum-mechanical calculations by methods resembling those of classical theory. This representation permits clear insights into the essential distinction between the quantum and classical descriptions of the field. It leads, in addition, to a simple formulation of a superposition law for photon fields. Detailed discussions are given of the incoherent fields which are generated by superposing the outputs of many stationary sources. These fields are all shown to have intimately related properties, some of which have been known for the particular case of blackbody radiation.

5,372 citations

Book
27 Aug 1986
TL;DR: In this paper, the authors define the notion of generalized coherent states and define a generalization of the Coherent State Representation T?(g) of the Heisenberg-Weyl Group.
Abstract: I Generalized Coherent States for the Simplest Lie Groups.- 1. Standard System of Coherent States Related to the Heisenberg-Weyl Group: One Degree of Freedom.- 1.1 The Heisenberg-Weyl Group and Its Representations.- 1.1.1 The Heisenberg-Weyl Group.- 1.1.2 Representations of the Heisenberg-Weyl Group.- 1.1.3 Concrete Realization of the Representation T?(g).- 1.2 Coherent States.- 1.3 The Fock-Bargmann Representation.- 1.4 Completeness of Coherent-State Subsystems.- 1.5 Coherent States and Theta Functions.- 1.6 Operators and Their Symbols.- 1.7 Characteristic Functions.- 2. Coherent States for Arbitrary Lie Groups.- 2.1 Definition of the Generalized Coherent State.- 2.2 General Properties of Coherent-State Systems.- 2.3 Completeness and Expansion in States of the CS System.- 2.4 Selection of Generalized CS Systems with States Closest to Classical.- 3. The Standard System of Coherent States Several Degrees of Freedom.- 3.1 General Properties.- 3.2 Coherent States and Theta Functions for Several Degrees of Freedom.- 4. Coherent States for the Rotation Group of Three-Dimensional Space.- 4.1 Structure of the Groups SO(3) and SU(2).- 4.2 Representations of SU(2).- 4.3 Coherent States.- 5. The Most Elementary Noneompact, Non-Abelian Simple Lie Group: SU(1,1).- 5.1 Group SU(1,1) and Its Representations.- 5.1.1 Fundamental Properties ofU(1,1) 67.- 5.1.2 Discrete Series.- 5.1.3 Principal (Continuous) Series.- 5.2 Coherent States.- 5.2.1 Discrete Series.- 5.2.2 Principal (Continuous) Series.- 6. The Lorentz Group: SO(3,1).- 6.1 Representations of the Lorentz Group.- 6.2 Coherent States.- 7. Coherent States for the SO(n, 1) Group: Class-1 Representations of the Principal Series.- 7.1 Class-I Representations of SO(n,1).- 7.2 Coherent States.- 8. Coherent States for a Bosonic System with Finite Number of Degrees of Freedom.- 8.1 Canonical Transformations.- 8.2 Coherent States.- 8.3 Operators in the Space ?B(+).- 9. Coherent States for a Fermionic System with Finite Number of Degrees of Freedom.- 9.1 Canonical Transformations.- 9.2 Coherent States.- 9.3 Operators in the Space ?F(+).- II General Case.- 10. Coherent States for Nilpotent Lie Groups.- 10.1 Structure of Nilpotent Lie Groups.- 10.2 Orbits of Coadjoint Representation.- 10.3 Orbits of Nilpotent Lie Groups.- 10.4 Representations of Nilpotent Lie Groups.- 10.5 Coherent States.- 11. Coherent States for Compact Semisimple Lie Groups.- 11.1 Elements of the Theory of Compact Semisimple Lie Groups..- 11.2 Representations of Compact Simple Lie Groups.- 11.3 Coherent States.- 12. Discrete Series of Representations: The General Case.- 12.1 Discrete Series.- 12.2 Bounded Domains.- 12.3 Coherent States.- 13. Coherent States for Real Semisimple Lie Groups: Class-I Representations of Principal Series.- 13.1 Class-I Representations.- 13.2 Coherent States.- 13.3 Horocycles in Symmetric Space.- 13.4 Rank-1 Symmetric Spaces.- 13.5 Properties of Rank-1 CS Systems.- 13.6 Complex Homogeneous Bounded Domains.- 13.6.1 Type-I Tube Domains.- 13.6.2 Type-II Tube Domains.- 13.6.3 Type-III Tube Domains.- 13.6.4 Type-IV Domains.- 13.6.5 The Exceptional Domain Dv.- 13.7 Properties of the Coherent States.- 14. Coherent States and Discrete Subgroups: The Case of SU(1,1).- 14.1 Preliminaries.- 14.2 Incompleteness Criterion for CS Subsystems Related to Discrete Subgroups.- 14.3 Growth of a Function Analytical in a Disk Related to the Distribution of Its Zeros.- 14.4 Completeness Criterion for CS Subsystems.- 14.5 Discrete Subgroups of SU(1,1) and Automorphic Forms.- 15. Coherent States for Discrete Series and Discrete Subgroups: General Case.- 15.1 Automorphic Forms.- 15.2 Completeness of Some CS Subsystems.- 16. Coherent States and Berezin's Quantization.- 16.1 Classical Mechanics.- 16.2 Quantization.- 16.3 Quantization on the Lobachevsky Plane.- 16.3.1 Description of Operators.- 16.3.2 The Correspondence Principle.- 16.3.3 Operator Th in Terms of a Laplacian.- 16.3.4 Representation of Group of Motions of the Lobachevsky Plane in Space ?h.- 16.3.5 Quantization by Inversions Analog to Weyl Quantization.- 16.4 Quantization on a Sphere.- 16.5 Quantization on Homogeneous Kahler Manifolds.- III Physical Applications.- 17. Preliminaries.- 18. Quantum Oscillators.- 18.1 Quantum Oscillator Acted on by a Variable External Force..- 18.2 Parametric Excitation of a Quantum Oscillator.- 18.3 Quantum Singular Oscillator.- 18.3.1 The Stationary Case.- 18.3.2 The Nonstationary Case.- 18.3.3 The Case of N Interacting Particles.- 18.4 Oscillator with Variable Frequency Acted on by an External Force.- 19. Particles in External Electromagnetic Fields.- 19.1 Spin Motion in a Variable Magnetic Field.- 19.2 Boson Pair Production in a Variable Homogeneous External Field.- 19.2.1 Dynamical Symmetry for Scalar Particles.- 19.2.2 The Multidimensional Case: Coherent States.- 19.2.3 The Multidimensional Case: Nonstationary Problem..- 19.3 Fermion Pair Production in a Variable Homogeneous External Field.- 19.3.1 Dynamical Symmetry for Spin-1/2 particles.- 19.3.2 Heisenberg Representation.- 19.3.3 The Multidimensional Case: Coherent States.- 20. Generating Function for Clebsch-Gordan Coefficients of the SU(2) group.- 21. Coherent States and the Quasiclassical Limit.- 22. 1/N Expansion for Gross-Neveu Models.- 22.1 Description of the Model.- 22.2 Dimensionality of Space ?N= ?O in the Fermion Case.- 22.3 Quasiclassical Limit.- 23. Relaxation to Thermodynamic Equilibrium.- 23.1 Relaxation of Quantum Oscillator to Thermodynamic Equilibrium.- 23.1.1 Kinetic Equation.- 23.1.2 Characteristic Functions and Quasiprobability Distributions.- 23.1.3 Use of Operator Symbols.- 23.2 Relaxation of a Spinning Particle to Thermodynamic Equilibrium in the Presence of a Magnetic Field.- 24. Landau Diamagnetism.- 25. The Heisenberg-Euler Lagrangian.- 26. Synchrotron Radiation.- 27. Classical and Quantal Entropy.- Appendix A. Proof of Completeness for Certain CS Subsystems.- Appendix B. Matrix Elements of the Operator D(y).- Appendix C. Jacobians of Group Transformations for Classical Domains.- Further Applications of the CS Method.- References.- Subject-Index.- Addendum. Further Applications of the CS Method.- References.- References to Addendum.- Subject-Index.

3,565 citations

Proceedings Article
14 Jul 1996
TL;DR: The striking signature of Bose condensation was the sudden appearance of a bimodal velocity distribution below the critical temperature of ~2µK.
Abstract: Bose-Einstein condensation (BEC) has been observed in a dilute gas of sodium atoms. A Bose-Einstein condensate consists of a macroscopic population of the ground state of the system, and is a coherent state of matter. In an ideal gas, this phase transition is purely quantum-statistical. The study of BEC in weakly interacting systems which can be controlled and observed with precision holds the promise of revealing new macroscopic quantum phenomena that can be understood from first principles.

3,530 citations

Journal ArticleDOI
30 Sep 2005-Science
TL;DR: It is demonstrated coherent control of a quantum two-level system based on two-electron spin states in a double quantum dot, allowing state preparation, coherent manipulation, and projective readout based on rapid electrical control of the exchange interaction.
Abstract: We demonstrated coherent control of a quantum two-level system based on two-electron spin states in a double quantum dot, allowing state preparation, coherent manipulation, and projective readout. These techniques are based on rapid electrical control of the exchange interaction. Separating and later recombining a singlet spin state provided a measurement of the spin dephasing time, T2*, of E10 nanoseconds, limited by hyperfine interactions with the gallium arsenide host nuclei. Rabi oscillations of two-electron spin states were demonstrated, and spin-echo pulse sequences were used to suppress hyperfine-induced dephasing. Using these quantum control techniques, a coherence time for two-electron spin states exceeding 1 microsecond was observed.

2,789 citations

Journal ArticleDOI
29 Apr 1999-Nature
TL;DR: In this article, a single-Cooper-pair box with a gate electrode was used to control the coherent quantum state evolution, which modifies the energies of the two charge states non-adiabatically, bringing them into resonance.
Abstract: 5-7 as a candidate for a quantum bit or 'qubit'—the basic component of a quantum computer. Here we report the observation of quantum oscillations in a single- Cooper-pair box. By applying a short voltage pulse via a gate electrode, we can control the coherent quantum state evolution: the pulse modifies the energies of the two charge states non- adiabatically, bringing them into resonance. The resulting state— a superposition of the two charge states—is detected by a tunnelling current through a probe junction. Our results demon- strate electrical coherent control of a qubit in a solid-state

2,172 citations


Network Information
Related Topics (5)
Quantum entanglement
39.5K papers, 1M citations
96% related
Quantum
60K papers, 1.2M citations
94% related
Open quantum system
20.4K papers, 924.6K citations
94% related
Quantum information
22.7K papers, 911.3K citations
92% related
Hamiltonian (quantum mechanics)
48.6K papers, 1M citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023106
2022272
2021507
2020454
2019476
2018384