scispace - formally typeset
Search or ask a question

Showing papers on "Coherent states in mathematical physics published in 1986"


Book
27 Aug 1986
TL;DR: In this paper, the authors define the notion of generalized coherent states and define a generalization of the Coherent State Representation T?(g) of the Heisenberg-Weyl Group.
Abstract: I Generalized Coherent States for the Simplest Lie Groups.- 1. Standard System of Coherent States Related to the Heisenberg-Weyl Group: One Degree of Freedom.- 1.1 The Heisenberg-Weyl Group and Its Representations.- 1.1.1 The Heisenberg-Weyl Group.- 1.1.2 Representations of the Heisenberg-Weyl Group.- 1.1.3 Concrete Realization of the Representation T?(g).- 1.2 Coherent States.- 1.3 The Fock-Bargmann Representation.- 1.4 Completeness of Coherent-State Subsystems.- 1.5 Coherent States and Theta Functions.- 1.6 Operators and Their Symbols.- 1.7 Characteristic Functions.- 2. Coherent States for Arbitrary Lie Groups.- 2.1 Definition of the Generalized Coherent State.- 2.2 General Properties of Coherent-State Systems.- 2.3 Completeness and Expansion in States of the CS System.- 2.4 Selection of Generalized CS Systems with States Closest to Classical.- 3. The Standard System of Coherent States Several Degrees of Freedom.- 3.1 General Properties.- 3.2 Coherent States and Theta Functions for Several Degrees of Freedom.- 4. Coherent States for the Rotation Group of Three-Dimensional Space.- 4.1 Structure of the Groups SO(3) and SU(2).- 4.2 Representations of SU(2).- 4.3 Coherent States.- 5. The Most Elementary Noneompact, Non-Abelian Simple Lie Group: SU(1,1).- 5.1 Group SU(1,1) and Its Representations.- 5.1.1 Fundamental Properties ofU(1,1) 67.- 5.1.2 Discrete Series.- 5.1.3 Principal (Continuous) Series.- 5.2 Coherent States.- 5.2.1 Discrete Series.- 5.2.2 Principal (Continuous) Series.- 6. The Lorentz Group: SO(3,1).- 6.1 Representations of the Lorentz Group.- 6.2 Coherent States.- 7. Coherent States for the SO(n, 1) Group: Class-1 Representations of the Principal Series.- 7.1 Class-I Representations of SO(n,1).- 7.2 Coherent States.- 8. Coherent States for a Bosonic System with Finite Number of Degrees of Freedom.- 8.1 Canonical Transformations.- 8.2 Coherent States.- 8.3 Operators in the Space ?B(+).- 9. Coherent States for a Fermionic System with Finite Number of Degrees of Freedom.- 9.1 Canonical Transformations.- 9.2 Coherent States.- 9.3 Operators in the Space ?F(+).- II General Case.- 10. Coherent States for Nilpotent Lie Groups.- 10.1 Structure of Nilpotent Lie Groups.- 10.2 Orbits of Coadjoint Representation.- 10.3 Orbits of Nilpotent Lie Groups.- 10.4 Representations of Nilpotent Lie Groups.- 10.5 Coherent States.- 11. Coherent States for Compact Semisimple Lie Groups.- 11.1 Elements of the Theory of Compact Semisimple Lie Groups..- 11.2 Representations of Compact Simple Lie Groups.- 11.3 Coherent States.- 12. Discrete Series of Representations: The General Case.- 12.1 Discrete Series.- 12.2 Bounded Domains.- 12.3 Coherent States.- 13. Coherent States for Real Semisimple Lie Groups: Class-I Representations of Principal Series.- 13.1 Class-I Representations.- 13.2 Coherent States.- 13.3 Horocycles in Symmetric Space.- 13.4 Rank-1 Symmetric Spaces.- 13.5 Properties of Rank-1 CS Systems.- 13.6 Complex Homogeneous Bounded Domains.- 13.6.1 Type-I Tube Domains.- 13.6.2 Type-II Tube Domains.- 13.6.3 Type-III Tube Domains.- 13.6.4 Type-IV Domains.- 13.6.5 The Exceptional Domain Dv.- 13.7 Properties of the Coherent States.- 14. Coherent States and Discrete Subgroups: The Case of SU(1,1).- 14.1 Preliminaries.- 14.2 Incompleteness Criterion for CS Subsystems Related to Discrete Subgroups.- 14.3 Growth of a Function Analytical in a Disk Related to the Distribution of Its Zeros.- 14.4 Completeness Criterion for CS Subsystems.- 14.5 Discrete Subgroups of SU(1,1) and Automorphic Forms.- 15. Coherent States for Discrete Series and Discrete Subgroups: General Case.- 15.1 Automorphic Forms.- 15.2 Completeness of Some CS Subsystems.- 16. Coherent States and Berezin's Quantization.- 16.1 Classical Mechanics.- 16.2 Quantization.- 16.3 Quantization on the Lobachevsky Plane.- 16.3.1 Description of Operators.- 16.3.2 The Correspondence Principle.- 16.3.3 Operator Th in Terms of a Laplacian.- 16.3.4 Representation of Group of Motions of the Lobachevsky Plane in Space ?h.- 16.3.5 Quantization by Inversions Analog to Weyl Quantization.- 16.4 Quantization on a Sphere.- 16.5 Quantization on Homogeneous Kahler Manifolds.- III Physical Applications.- 17. Preliminaries.- 18. Quantum Oscillators.- 18.1 Quantum Oscillator Acted on by a Variable External Force..- 18.2 Parametric Excitation of a Quantum Oscillator.- 18.3 Quantum Singular Oscillator.- 18.3.1 The Stationary Case.- 18.3.2 The Nonstationary Case.- 18.3.3 The Case of N Interacting Particles.- 18.4 Oscillator with Variable Frequency Acted on by an External Force.- 19. Particles in External Electromagnetic Fields.- 19.1 Spin Motion in a Variable Magnetic Field.- 19.2 Boson Pair Production in a Variable Homogeneous External Field.- 19.2.1 Dynamical Symmetry for Scalar Particles.- 19.2.2 The Multidimensional Case: Coherent States.- 19.2.3 The Multidimensional Case: Nonstationary Problem..- 19.3 Fermion Pair Production in a Variable Homogeneous External Field.- 19.3.1 Dynamical Symmetry for Spin-1/2 particles.- 19.3.2 Heisenberg Representation.- 19.3.3 The Multidimensional Case: Coherent States.- 20. Generating Function for Clebsch-Gordan Coefficients of the SU(2) group.- 21. Coherent States and the Quasiclassical Limit.- 22. 1/N Expansion for Gross-Neveu Models.- 22.1 Description of the Model.- 22.2 Dimensionality of Space ?N= ?O in the Fermion Case.- 22.3 Quasiclassical Limit.- 23. Relaxation to Thermodynamic Equilibrium.- 23.1 Relaxation of Quantum Oscillator to Thermodynamic Equilibrium.- 23.1.1 Kinetic Equation.- 23.1.2 Characteristic Functions and Quasiprobability Distributions.- 23.1.3 Use of Operator Symbols.- 23.2 Relaxation of a Spinning Particle to Thermodynamic Equilibrium in the Presence of a Magnetic Field.- 24. Landau Diamagnetism.- 25. The Heisenberg-Euler Lagrangian.- 26. Synchrotron Radiation.- 27. Classical and Quantal Entropy.- Appendix A. Proof of Completeness for Certain CS Subsystems.- Appendix B. Matrix Elements of the Operator D(y).- Appendix C. Jacobians of Group Transformations for Classical Domains.- Further Applications of the CS Method.- References.- Subject-Index.- Addendum. Further Applications of the CS Method.- References.- References to Addendum.- Subject-Index.

3,565 citations


Journal ArticleDOI
TL;DR: In this article, the Kustaanheino-Stiefel transformation is used to transform the Coulomb problem to a four-dimensional isotropic harmonic oscillator with a constraint.
Abstract: The Kustaanheino-Stiefel transformation is used to transform the Coulomb problem to a four-dimensional isotropic harmonic oscillator with a constraint. Ordinary coherent states are introduced over this oscillator and are shown to evolve in a fictitious time. When projected back into the physical space, the states follow the classical Kepler orbits in physical time. The resulting quasiclassical picture is obtained without the Bohr correspondence principle of taking only contributions from high principal quantum numbers.

57 citations


Journal ArticleDOI
TL;DR: In this paper, the authors studied the properties of the states U2( rho, theta, lambda ) mod A, where U2 is an operator associated with the group SU(1,1), and mod A is a standard coherent state defined in terms of the usual boson creation and destruction operators aDagger and a.
Abstract: The authors study the properties of the states U2( rho , theta , lambda ) mod A) where U2 is an operator associated with the group SU(1,1), and mod A) is a standard (atomic or Glauber) coherent state defined in terms of the usual boson creation and destruction operators aDagger and a. They show how these states may be viewed as ordinary coherent states in terms of the Bogoliubov quasiparticles whose creation and destruction operators bDagger and b are associated with the operators aDagger and a by a Bogoliubov transformation. As an important example of the use of these states, they show that they are the coherent states associated with a uniformly accelerated (Rindler) observer moving through Minkowski space. The previous results then simply show how the Minkowski (inertial) vacuum appears to the Rindler observer as a black-body radiator with a Planckian distribution corresponding to a temperature proportional to the proper acceleration.

27 citations


Journal ArticleDOI
TL;DR: In this article, a noncommutative version of the Cramer theorem is used to show that if two quantum systems are prepared independently, and if their center of mass is found to be in a coherent state, then each of the component systems is also in the coherent state.
Abstract: A noncommutative version of the Cramer theorem is used to show that if two quantum systems are prepared independently, and if their center of mass is found to be in a coherent state, then each of the component systems is also in a coherent state, centered around the position in phase space predicted by the classical theory. Thermal coherent states are also shown to possess properties similar to classical ones.

18 citations


Book ChapterDOI
01 Jan 1986

4 citations


Journal ArticleDOI
TL;DR: The totality of solutions for a hierarchy of equations in soliton theory is identified with the set of coherent states associated with a quantum system of infinitely many harmonically interacting fermions.

2 citations


Book ChapterDOI
01 Jan 1986
TL;DR: A survey of quantum stocha-stic calculus in Boson Fock space is given in this article, together with a survey of its applications in quantum stochastic calculus in general.
Abstract: A survey is given of the recently developed theory of quantum stocha-stic calculus in Boson Fock space, together with its applications.

2 citations


Journal ArticleDOI
TL;DR: In this article, the path integral expression for coherent state transition amplitudes is examined from a group theoretical point of view, and new sets of coherent states are introduced based on dynamical subalgebras and also with fiducial vectors in the rigged Hilbert space.
Abstract: Generalised coherent states are used in the quantum mechanical study of physical systems with homogeneous phase spaces, for which there is a group theoretical approach to quantisation. New sets of coherent states are introduced based on dynamical subalgebras and also with fiducial vectors in the rigged Hilbert space. The path integral expression for coherent state transition amplitudes is examined from a group theoretical point of view.

2 citations