scispace - formally typeset
Search or ask a question

Showing papers on "Collimated light published in 2016"


Journal ArticleDOI
TL;DR: In this paper, the authors proposed a method based on heterodyne laser links and light-pulse atom interferometry that enables high sensitivity gravitational-wave detection in the 0.1-mHz to 1-Hz frequency band using a single, long ($g{10}^{8}$ m) detector baseline.
Abstract: We propose a gravitational-wave detection method based on heterodyne laser links and light-pulse atom interferometry that enables high sensitivity gravitational-wave detection in the 0.1-mHz to 1-Hz frequency band using a single, long ($g{10}^{8}$ m), detector baseline. The detection baseline in previous atom-based proposals was constrained by the need for a reference laser to remain collimated over the optical propagation path between two satellites. Here we circumvent this requirement by employing a strong local oscillator laser near each atom ensemble that is phase referenced or phase locked to the reference laser beam. Longer baselines offer a number of potential advantages, including enhanced sensitivity, simplified atom optics, and reduced atomic source flux requirements.

108 citations


Journal ArticleDOI
TL;DR: In this paper, a 4×2 optical encoder is proposed by employing the self-collimation effect in 2D photonic crystals, the total structure of the proposed device is a combination of so called "beam splitters" and "mirrors".
Abstract: In this paper a 4×2 optical encoder is proposed by employing the self-collimation effect in 2D photonic crystals. The total structure of the proposed device is a combination of so called “beam splitters” and “mirrors”. The simulation result indicates that, this design can operate as 4×2 optical encoder, the footprint of structure is about 69 µm×55 µm and response time is about 1.4 ps.

82 citations


Journal ArticleDOI
TL;DR: In this article, the authors review different approaches that allow understanding light propagation in biaxial crystals, including the case of multiple crystals in cascade, and focus on the description of the singular properties of the conical refraction (CR) beams.
Abstract: In 1832 Hamilton predicted that a collimated light beam propagating through a biaxial crystal parallel to one of its optical axes refracts as a slanted cone within the crystal and emerges as a hollow light cylinder, this optical effect being named as conical refraction (CR). The diffractive solution of CR presented by Belsky and Khapalyuk in 1978 and the corresponding re-formulation carried out by Berry in 2004 rekindled this old and almost forgotten phenomenon. In this article, we review the CR phenomenon following different approaches that allow understanding light propagation in biaxial crystals, including the case of multiple crystals in cascade. We then focus on the description of the singular properties of the CR beams, presenting some examples such as optical bottle beams and beams carrying orbital angular momentum. All these features are used to introduce some of the most appealing applications of CR in the fields of optical trapping, free-space optical communications, polarization metrology, super-resolution imaging, two-photon polymerization, and lasers.

76 citations


Journal ArticleDOI
TL;DR: Light-induced double Bragg diffraction of delta-kick collimated Bose-Einstein condensates is employed to create three symmetric Mach-Zehnder interferometers that double the scale factor and feature a better suppression of noise and systematic uncertainties intrinsic to the diffraction process.
Abstract: We employ light-induced double Bragg diffraction of delta-kick collimated Bose-Einstein condensates to create three symmetric Mach-Zehnder interferometers. They rely on (i) first-order, (ii) two successive first-order, and (iii) second-order processes which demonstrate the scalability of the corresponding momentum transfer. With respect to devices based on conventional Bragg scattering, these symmetric interferometers double the scale factor and feature a better suppression of noise and systematic uncertainties intrinsic to the diffraction process. Moreover, we utilize these interferometers as tiltmeters for monitoring their inclination with respect to gravity.

71 citations


Patent
31 Mar 2016
TL;DR: In this article, a collimator filter layer on an image sensor wafer is formed, where a plurality of light collimating apertures in the collimators are aligned with the light sensing elements in the wafer.
Abstract: Methods and systems for integrating image sensor structures with collimator filters, including manufacturing methods and associated structures for forming collimator filters at the wafer level for integration with image sensor semiconductor wafers. Methods of making an optical biometric sensor include forming a collimator filter layer on an image sensor wafer, wherein a plurality of light collimating apertures in the collimator filter layer are aligned with a plurality of light sensing elements in the image sensor wafer, and after forming the collimator filter layer on the image sensor wafer, singulating the image sensor wafer into a plurality of individual optical sensors.

65 citations


Journal ArticleDOI
TL;DR: An auto-referenced interferometric method for calibrating phase modulation of parallel-aligned liquid crystal (PAL) spatial light modulators (SLM) is described, which uses the SLM itself to create a tilted plane wave and a reference wave which mutually interfere.
Abstract: An auto-referenced interferometric method for calibrating phase modulation of parallel-aligned liquid crystal (PAL) spatial light modulators (SLM) is described. The method is experimentally straightforward, robust, and requires solely of a collimated beam, with no need of additional optics. This method uses the SLM itself to create a tilted plane wave and a reference wave which mutually interfere. These waves are codified by means of a binary diffraction grating and a uniformly distributed gray level area (piston) into the SLM surface. Phase shift for each gray level addressed to the piston section can then be evaluated. Phase modulation on the SLM can also be retrieved with the proposed method over spatially resolved portions of the surface. Phase information obtained with this novel method is compared to other well established calibration procedures, requiring extra elements and more elaborated optical set-ups. The results show a good agreement with previous methods. The advantages of the new method include high mechanical stability, faster performance, and a significantly easier practical implementation.

63 citations


Journal ArticleDOI
TL;DR: An implantable silicon-based probe with a compact light delivery system, consisting of silicon nitride waveguides and grating couplers for out-of-plane light emission with high spatial resolution, is demonstrated.
Abstract: Optimal optogenetic perturbation of brain circuit activity often requires light delivery in a precise spatial pattern that cannot be achieved with conventional optical fibers. We demonstrate an implantable silicon-based probe with a compact light delivery system, consisting of silicon nitride waveguides and grating couplers for out-of-plane light emission with high spatial resolution. 473 nm light is coupled into and guided in cm-long waveguide and emitted at the output grating coupler. Using the direct cut-back and out-scattering measurement techniques, the propagation optical loss of the waveguide is measured to be below 3 dB/cm. The grating couplers provide collimated light emission with sufficient irradiance for neural stimulation. Finally, a probe with multisite light delivery with three output grating emitters from a single laser input is demonstrated.

61 citations


Journal ArticleDOI
TL;DR: In this paper, the use of a guided laser beam as an illumination source for a Fourier ptychographic (FP) microscopy system is described. But the system is limited to a single image and requires a high-frame-rate camera for a faster acquisition.
Abstract: Fourier ptychographic (FP) microscopy is a coherent imaging method that can synthesize an image with a higher bandwidth using multiple low-bandwidth images captured at different spatial frequency regions. The method’s demand for multiple images drives the need for a brighter illumination scheme and a high-frame-rate camera for a faster acquisition. We report the use of a guided laser beam as an illumination source for an FP microscope. It uses a mirror array and a 2-dimensional scanning Galvo mirror system to provide a sample with plane-wave illuminations at diverse incidence angles. The use of a laser presents speckles in the image capturing process due to reflections between glass surfaces in the system. They appear as slowly varying background fluctuations in the final reconstructed image. We are able to mitigate these artifacts by including a phase image obtained by differential phase contrast (DPC) deconvolution in the FP algorithm. We use a 1-Watt laser configured to provide a collimated beam with 150 mW of power and beam diameter of 1 cm to allow for the total capturing time of 0.96 seconds for 96 raw FPM input images in our system, with the camera sensor’s frame rate being the bottleneck for speed. We demonstrate a factor of 4 resolution improvement using a 0.1 NA objective lens over the full camera field-of-view of 2.7 mm by 1.5 mm.

58 citations


Journal ArticleDOI
TL;DR: In this paper, the excess of events in the diphoton final state near 750 GeV observed by ATLAS and CMS can be explained within the NMSSM near the R-symmetry limit.
Abstract: The excess of events in the diphoton final state near 750 GeV observed by ATLAS and CMS can be explained within the NMSSM near the R-symmetry limit. Both scalars beyond the Standard Model Higgs boson have masses near 750 GeV, mix strongly, and share sizeable production cross sections in association with b-quarks as well as branching fractions into a pair of very light pseudoscalars. Pseudoscalars with a mass of ∼ 210 MeV decay into collimated diphotons, whereas pseudoscalars with a mass of ∼ 500–550 MeV can decay either into collimated diphotons or into three π 0 resulting in collimated photon jets. Various such scenarios are discussed; the dominant constraints on the latter scenario originate from bounds on radiative Y decays, but they allow for a signal cross section up to 6.7 fb times the acceptance for collimated multiphotons to pass as a single photon.

51 citations


Journal ArticleDOI
TL;DR: In this article, a 1'×'2 optical decoder is proposed by employing the self-collimation effect in 2D photonic crystals, where the total structure of the proposed device is a combination of so called beam splitters.
Abstract: In this paper, a 1 × 2 optical decoder is proposed by employing the self-collimation effect in 2D photonic crystals. The total structure of the proposed device is a combination of so called “beam splitters.” The simulation result indicates that this design can operate as a 1 × 2 optical decoder. We employed finite-difference time-domain method and plane wave expansion for simulating the proposed structure.

45 citations


Journal ArticleDOI
TL;DR: Single-shot, tomographic imaging of the three-dimensional concentration field is demonstrated in a turbulent gaseous free jet in co-flow using volumetrically illuminated laser-induced fluorescence to be sufficient for recording instantaneous three- dimensional features with high signal-to-noise and nominal spatial resolution.
Abstract: Single-shot, tomographic imaging of the three-dimensional concentration field is demonstrated in a turbulent gaseous free jet in co-flow using volumetrically illuminated laser-induced fluorescence. The fourth-harmonic output of an Nd:YAG laser at 266 nm is formed into a collimated 15 × 20 mm2 beam to excite the ground singlet state of acetone seeded into the central jet. Subsequent fluorescence is collected along eight lines of sight for tomographic reconstruction using a combination of stereoscopes optically coupled to four two-stage intensified CMOS cameras. The performance of the imaging system is evaluated and shown to be sufficient for recording instantaneous three-dimensional features with high signal-to-noise (130:1) and nominal spatial resolution of 0.6–1.5 mm at x/D = 7–15.5.

Journal ArticleDOI
TL;DR: A proof-of-concept high-field MRI-linac has been built and experimentally characterized to establish the efficacy of a high field inline MRI-liner and study a number of the technical challenges and solutions.
Abstract: Purpose: The pursuit of real-time image guided radiotherapy using optimal tissue contrast has seen the development of several hybrid magnetic resonance imaging (MRI)-treatment systems, high field and low field, and inline and perpendicular configurations. As part of a new MRI-linac program, an MRI scanner was integrated with a linear accelerator to enable investigations of a coupled inline MRI-linac system. This work describes results from a prototype experimental system to demonstrate the feasibility of a high field inline MR-linac. Methods: The magnet is a 1.5 T MRI system (Sonata, Siemens Healthcare) was located in a purpose built radiofrequency (RF) cage enabling shielding from and close proximity to a linear accelerator with inline (and future perpendicular) orientation. A portable linear accelerator (Linatron, Varian) was installed together with a multileaf collimator (Millennium, Varian) to provide dynamic field collimation and the whole assembly built onto a stainless-steel rail system. A series of MRI-linac experiments was performed to investigate (1) image quality with beam on measured using a macropodine (kangaroo) ex vivo phantom; (2) the noise as a function of beam state measured using a 6-channel surface coil array; and (3) electron contamination effects measured using Gafchromic film and an electronic portal imaging device (EPID). Results: (1) Image quality was unaffected by the radiation beam with the macropodine phantom image with the beam on being almost identical to the image with the beam off. (2) Noise measured with a surface RF coil produced a 25% elevation of background intensity when the radiation beam was on. (3) Film and EPID measurements demonstrated electron focusing occurring along the centerline of the magnet axis. Conclusions: A proof-of-concept high-field MRI-linac has been built and experimentally characterized. This system has allowed us to establish the efficacy of a high field inline MRI-linac and study a number of the technical challenges and solutions.

Journal ArticleDOI
TL;DR: It is shown that in a small-angle approximation a proper mapping can be calculated via optimal mass transport - a mathematical framework for the calculation of a mapping between two positive density functions and that the surface can be constructed by solving a linear advection Eq.
Abstract: The efficient design of continuous freeform surfaces, which maps a given light source to an arbitrary target illumination pattern, remains a challenging problem and is considered here for collimated input beams. A common approach are ray-mapping methods, where first a ray mapping between the source and the irradiance distribution on the target plane is calculated and in a subsequent step the surface is constructed. The challenging aspect of this approach is to find an integrable mapping ensuring a continuous surface. Based on the law of reflection/refraction and an integrability condition, we derive a general condition for the surface and ray mapping for a collimated input beam. It is shown that in a small-angle approximation a proper mapping can be calculated via optimal mass transport - a mathematical framework for the calculation of a mapping between two positive density functions. We show that the surface can be constructed by solving a linear advection Eq. with appropriate boundary conditions. The results imply that the optimal mass transport mapping is approximately integrable over a wide range of distances between the freeform and the target plane and offer an efficient way to construct the surface by solving standard integrals. The efficiency is demonstrated by applying it to two challenging design examples, which shows the ability of the presented approach to handle target illumination patterns with steep irradiance gradients and numerous gray levels.

Journal ArticleDOI
TL;DR: A new optics beamline and a versatile 11-axes UHV-reflectometer for at-wavelength characterization of real life-sized UV- and XUV-reflection gratings and other (nano-) optical elements has been set up and is in operation at BESSY-II.
Abstract: A technology center for the production of high-precision reflection gratings has been established. Within this project a new optics beamline and a versatile reflectometer for at-wavelength characterization of UV- and XUV-reflection gratings and other (nano-) optical elements has been set up at BESSY-II. The Plane Grating Monochromator beamline operated in collimated light (c-PGM) is equipped with an SX700 monochromator, of which the blazed gratings (600 and 1200 lines mm−1) have been recently exchanged for new ones of improved performance produced in-house. Over the operating range from 10 to 2000 eV this beamline has very high spectral purity achieved by (i) a four-mirror arrangement of different coatings which can be inserted into the beam at different angles and (ii) by absorber filters for high-order suppression. Stray light and scattered radiation is removed efficiently by double sets of in situ exchangeable apertures and slits. By use of in- and off-plane bending-magnet radiation the beamline can be adjusted to either linear or elliptical polarization. One of the main features of a novel 11-axes reflectometer is the possibility to incorporate real life-sized gratings. The samples are adjustable within six degrees of freedom by a newly developed UHV-tripod system carrying a load up to 4 kg, and the reflectivity can be measured between 0 and 90° incidence angle for both s- and p-polarization geometry. This novel powerful metrology facility has gone into operation recently and is now open for external users. First results on optical performance and measurements on multilayer gratings will be presented here.

Journal ArticleDOI
TL;DR: A novel passive focusing system for Air-Coupled Ultrasonic (ACU) piezoelectric transducers which is inspired by the Newtonian-Cassegrain telescope concept, which has a coaxial design, which eases the transducers positioning and use in many applications, and is less bulky than off-axis mirrors.

Journal ArticleDOI
TL;DR: A multiple pinhole collimator based XLCT, in which multiple X-ray beams are generated to scan a sample at multiple positions simultaneously, is proposed, which requires much less measurement time.
Abstract: X-ray luminescence computed tomography (XLCT) is an emerging hybrid imaging modality, which is able to improve the spatial resolution of optical imaging to hundreds of micrometers for deep targets by using superfine X-ray pencil beams. However, due to the low X-ray photon utilization efficiency in a single pinhole collimator based XLCT, it takes a long time to acquire measurement data. Herein, we propose a multiple pinhole collimator based XLCT, in which multiple X-ray beams are generated to scan a sample at multiple positions simultaneously. Compared with the single pinhole based XLCT, the multiple X-ray beam scanning method requires much less measurement time. Numerical simulations and phantom experiments have been performed to demonstrate the feasibility of the multiple X-ray beam scanning method. In one numerical simulation, we used four X-ray beams to scan a cylindrical object with 6 deeply embedded targets. With measurements from 6 angular projections, all 6 targets have been reconstructed successfully. In the phantom experiment, we generated two X-ray pencil beams with a collimator manufactured in-house. Two capillary targets with 0.6 mm edge-to-edge distance embedded in a cylindrical phantom have been reconstructed successfully. With the two beam scanning, we reduced the data acquisition time by 50%. From the reconstructed XLCT images, we found that the Dice similarity of targets is 85.11% and the distance error between two targets is less than 3%. We have measured the radiation dose during XLCT scan and found that the radiation dose, 1.475 mSv, is in the range of a typical CT scan. We have measured the changes of the collimated X-ray beam size and intensity at different distances from the collimator. We have also studied the effects of beam size and intensity in the reconstruction of XLCT.

Journal ArticleDOI
John G. Kirk1
TL;DR: In this paper, the dynamics of electrons in counter-propagating, circularly polarized laser beams are shown to exhibit attractors whose ability to trap particles depends on the ratio of the beam intensities and a single parameter describing radiation reaction.
Abstract: The dynamics of electrons in counter-propagating, circularly polarized laser beams are shown to exhibit attractors whose ability to trap particles depends on the ratio of the beam intensities and a single parameter describing radiation reaction. Analytical expressions are found for the underlying limit cycles and the parameter range in which they are stable. In high-intensity optical pulses, where radiation reaction strongly modifies the trajectories, the production of collimated gamma-rays and the initiation of non-linear cascades of electron–positron pairs can be optimized by a suitable choice of the intensity ratio.

Proceedings ArticleDOI
TL;DR: In this paper, a new X-ray parallel beam facility (XPBF 2.0) has been installed in the laboratory of the Physikalisch-Technische Bundesanstalt at the synchrotron radiation facility BESSY II in Berlin to characterize silicon pore optics (SPOs) for the future Xray observatory ATHENA.
Abstract: A new X-ray parallel beam facility (XPBF 2.0) has been installed in the laboratory of the Physikalisch-Technische Bundesanstalt at the synchrotron radiation facility BESSY II in Berlin to characterize silicon pore optics (SPOs) for the future X-ray observatory ATHENA. As the existing XPBF which is operated since 2005, the new beamline provides a pencil beam of very low divergence, a vacuum chamber with a hexapod system for accurate positioning of the SPO to be investigated, and a vertically movable CCD-based camera system to register the direct and the reflected beam. In contrast to the existing beamline, a multilayer-coated toroidal mirror is used for beam monochromatization at 1.6 keV and collimation, enabling the use of beam sizes between about 100 μm and at least 5 mm. Thus the quality of individual pores as well as the focusing properties of large groups of pores can be investigated. The new beamline also features increased travel ranges for the hexapod to cope with larger SPOs and a sample to detector distance of 12 m corresponding to the envisaged focal length of ATHENA.

Journal ArticleDOI
TL;DR: The design, optical simulation, and experiment results showed that the presented optical fiber daylighting system is a strong candidate for an inexpensive and highly efficient application of solar energy in buildings.
Abstract: We present the design, optical simulation, and experiment of a modified optical fiber daylighting system (M-OFDS) for indoor lighting. The M-OFDS is comprised of three sub-systems: concentration, collimation, and distribution. The concentration part is formed by coupling a Fresnel lens with a large-core plastic optical fiber. The sunlight collected by the concentration sub-system is propagated in a plastic optical fiber and then collimated by the collimator, which is a combination of a parabolic mirror and a convex lens. The collimated beam of sunlight travels in free space and is guided to the interior by directing flat mirrors, where it is diffused uniformly by a distributor. All parameters of the system are calculated theoretically. Based on the designed system, our simulation results demonstrated a maximum optical efficiency of 71%. The simulation results also showed that sunlight could be delivered to the illumination destination at distance of 30 m. A prototype of the M-OFDS was fabricated, and preliminary experiments were performed outdoors. The simulation results and experimental results confirmed that the M-OFDS was designed effectively. A large-scale system constructed by several M-OFDSs is also proposed. The results showed that the presented optical fiber daylighting system is a strong candidate for an inexpensive and highly efficient application of solar energy in buildings.

Patent
23 Feb 2016
TL;DR: In this paper, a backlight unit that generates a collimated light source and that includes a switchable diffuser film for selectively scattering the light source depending on the current viewing mode of the display is presented.
Abstract: An electronic device may generate content that is to be displayed on a display. The display may have an array of liquid crystal display pixels for displaying image frames of the content. The display may be operated in at least a normal viewing mode, a privacy mode, an outdoor viewing mode, and a power saving mode. The different view modes may exhibit different viewing angles. In one configuration, the display may include a backlight unit that generates a collimated light source and that includes a switchable diffuser film for selectively scattering the collimated light source depending on the current viewing mode of the display. In another configuration, the display may include a backlight unit that generates a scattered light source that includes a switchable microarray structure such as a switchable mirror structure or a tunable microlens array for selectively collimating the scattered light source depending on the current viewing mode.

Journal ArticleDOI
TL;DR: In this article, double freeform surfaces are utilized to shape collimated Gaussian beams, realizing an arbitrary output wavefront with desired illumination pattern, without the limitation of symmetry or paraxial approximation.
Abstract: Beam shaping, in other words, the control of both intensity distribution and phase profile, has a wide range of applications In this paper, double freeform surfaces are utilized to shape collimated beams, realizing an arbitrary output wavefront with desired illumination pattern Freeform surfaces are designed by solving a second order partial differential equation (PDE) of the Monge–Ampere (MA) type, without the limitation of symmetry or paraxial approximation The mathematical derivation of the PDE is based on the Snell's law, the energy conservation law along infinitesimal tubes of rays and the constancy of the OPL The PDE is discretized with a finite difference scheme into a system of nonlinear equations, which can be numerically solved by Newton's method Since Newton's method requires a good initialization for the iteration, a simultaneously point-by-point method, based on ray mapping, is employed to find the initial iterate Different design examples are given to demonstrate the effectiveness and wide application of our method, transforming a collimated Gaussian beam into a spherical wavefront with uniform illumination patterns Variable-sized uniform illumination pattern can be obtained by moving the observation plane due to a potential benefit of the spherical output wavefront

Patent
19 Jul 2016
TL;DR: In this article, a lighting system, a backlight unit and a 3D image display apparatus including a diffraction device are provided for the backlight to selectively output collimated light and diverging light.
Abstract: Provided are a lighting system, a backlight unit and a 3D image display apparatus including the backlight unit. The backlight unit includes: a lighting system configured to selectively output collimated light and diverging light, a diffraction device, and a light guide plate configured to guide the collimated light and the diverging light from the lighting system to the diffraction device. An exit direction of the collimated light from the diffraction device depends on at least one of an angle of incidence of the collimated light and the wavelength of the collimated light.

Journal ArticleDOI
TL;DR: In this article, a single-pulse scheme that uses a plasma mirror to reflect the drive beam of a laser plasma accelerator and to make it collide with the highlyrelativistic electrons in its wake is presented.
Abstract: All-optical Compton sources are innovative, compact devices to produce high energy femtosecond x-rays. Here we present results on a single-pulse scheme that uses a plasma mirror to reflect the drive beam of a laser plasma accelerator and to make it collide with the highly-relativistic electrons in its wake. The accelerator is operated in the self-injection regime, producing quasi-monoenergetic electron beams of around 150 MeV peak energy. Scattering with the intense femtosecond laser pulse leads to the emission of a collimated high energy photon beam. Using continuum-attenuation filters we measure significant signal content beyond 100 keV and with simulations we estimate a peak photon energy of around 500 keV. The source divergence is about 13 mrad and the pointing stability is 7 mrad. We demonstrate that the photon yield from the source is sufficiently high to illuminate a centimeter-size sample placed 90 centimeters behind the source, thus obtaining radiographs in a single shot.

Journal ArticleDOI
01 Jul 2016-Optik
TL;DR: In this article, the analytical expressions for beam wander of collimated and focused beam in oceanic turbulence are derived, and the relationship between beam wander and the long-term spot size or turbulence-induced beam spot size is investigated.

Journal ArticleDOI
TL;DR: The extent to which new developments in 3D dosimetry using optical computed tomography (CT) can visualise MRT dose distributions is investigated, and what further developments are necessary are assessed before fully quantitative 3D measurements can be achieved.
Abstract: Synchrotron microbeam radiation therapy (MRT) is an advanced form of radiotherapy for which it is extremely difficult to provide adequate quality assurance. This may delay or limit its clinical uptake, particularly in the paediatric patient populations for whom it could be especially suitable. This study investigates the extent to which new developments in 3D dosimetry using optical computed tomography (CT) can visualise MRT dose distributions, and assesses what further developments are necessary before fully quantitative 3D measurements can be achieved. Two experiments are reported. In the first cylindrical samples of the radiochromic polymer PRESAGE(®) were irradiated with different complex MRT geometries including multiport treatments of collimated 'pencil' beams, interlaced microplanar arrays and a multiport treatment using an anthropomorphic head phantom. Samples were scanned using transmission optical CT. In the second experiment, optical CT measurements of the biologically important peak-to-valley dose ratio (PVDR) were compared with expected values from Monte Carlo simulations. The depth-of-field (DOF) of the optical CT system was characterised using a knife-edge method and the possibility of spatial resolution improvement through deconvolution of a measured point spread function (PSF) was investigated. 3D datasets from the first experiment revealed excellent visualisation of the 50 μm beams and various discrepancies from the planned delivery dose were found. The optical CT PVDR measurements were found to be consistently 30% of the expected Monte Carlo values and deconvolution of the microbeam profiles was found to lead to increased noise. The reason for the underestimation of the PVDR by optical CT was attributed to lack of spatial resolution, supported by the results of the DOF characterisation. Solutions are suggested for the outstanding challenges and the data are shown already to be useful in identifying potential treatment anomalies.

Journal ArticleDOI
TL;DR: A four-flux model relying on a matrix formalism to determine the reflectance and transmittance factors of stacks of components by knowing those of each individual component is developed and extended to generate the bidirectional scattering distribution function of the stack.
Abstract: The four-flux model is a method to solve light radiative-transfer problems in planar, possibly multilayer structures. The light fluxes are modeled as two collimated and two diffuse beams propagating forward and backward perpendicularly to the layer stack. In the present contribution, we develop a four-flux model relying on a matrix formalism to determine the reflectance and transmittance factors of stacks of components by knowing those of each individual component. This model is also extended to generate the bidirectional scattering distribution function of the stack by considering an incoming collimated flux in any direction and by taking into account the directionality of the diffuse fluxes exiting from the material at the border components of the stack. The model is applied to opaque Lambertian backgrounds with flat or rough interfaces for which analytical expressions of the BSDF are obtained.

Journal ArticleDOI
TL;DR: Collimation of PBS beams should be considered for superficial targets particularly for beams delivered through a range-shifter, since the resultant sharpening of the lateral edge will allow improved sparing of adjacent normal tissues.
Abstract: Purpose: The lateral edge of a proton therapy beam is commonly used to achieve conformality to the treatment volume where critical structures reside close to the target. However, when treating shallow depths, the lateral edge of a pencil beam scanning (PBS) system may be broader than that of a double scattered (DS) system. Use of a range-shifter to degrade the beam and allow treatment of very shallow depths further blurs the lateral edge. The authors investigate the potential use of a collimator with a PBS system for delivery of 3D uniform dose–volumes to a water-tank phantom, identifying the key factors controlling the width of the lateral edge. Methods: The geant4 application for tomographic emission (gate) Monte Carlo(MC) environment was used, following validation against previously published data. Key parameters for PBS beams were investigated to assess their impact on the lateral edge of both monoenergetic beams and uniform dose–volumes. These parameters included nozzle-to-surface distance (NSD), vacuum window-to-surface distance (VSD), use of a range-shifter, and spot optimization parameters. Results: The lateral edge of an uncollimated PBS beam is particularly sensitive to VSD and NSD. While use of a range-shifter blurs the lateral edge, collimation allows the edge to be sharpened to between 2 and 4 mm depending on the depth of the target. Optimization of the spot weightings alone can provide a penumbral width close to that of a single spot, but also leads to poorer uniformity near the edge of the target volume. Conclusions: Collimation of PBS beams should be considered for superficial targets particularly for beams delivered through a range-shifter, since the resultant sharpening of the lateral edge will allow improved sparing of adjacent normal tissues. Further work is needed to develop collimators which are integrated into both nozzle designs and planning system optimization algorithms.

Journal ArticleDOI
TL;DR: In this paper, a custom detection laser system consisting of a high-powered fibre-coupled Nd:YAG solid-state laser with a collimated beam was implemented in the detection stage of a laser ablation aerosol particle time-of-flight (LAAP-TOF) single-particle mass spectrometer without major modifications to instrument geometry.
Abstract: . Single-particle mass spectrometry (SPMS) is a useful tool for the online study of aerosols with the ability to measure size-resolved chemical composition with a temporal resolution relevant to atmospheric processes. In SPMS, optical particle detection is used for the effective temporal alignment of an ablation laser pulse with the presence of a particle in the ion source, and it gives the option of aerodynamic sizing by measuring the offset of particle arrival times between two detection stages. The efficiency of the optical detection stage has a strong influence on the overall instrument performance. A custom detection laser system consisting of a high-powered fibre-coupled Nd:YAG solid-state laser with a collimated beam was implemented in the detection stage of a laser ablation aerosol particle time-of-flight (LAAP-TOF) single-particle mass spectrometer without major modifications to instrument geometry. The use of a collimated laser beam permitted the construction of a numerical model that predicts the effects of detection laser wavelength, output power, beam focussing characteristics, light collection angle, particle size, and refractive index on the effective detection radius (R) of the detection laser beam. We compare the model predictions with an ambient data set acquired during the Ice in Clouds Experiment – Dust (ICE-D) project. The new laser system resulted in an order-of-magnitude improvement in instrument sensitivity to spherical particles in the size range 500–800 nm compared to a focussed 405 nm laser diode system. The model demonstrates that the limit of detection in terms of particle size is determined by the scattering cross section (Csca) as predicted by Mie theory. In addition, if light is collected over a narrow collection angle, oscillations in the magnitude of Csca with respect to particle diameter result in a variation in R, resulting in large particle-size-dependent variation in detection efficiency across the particle transmission range. This detection bias is imposed on the aerodynamic size distributions measured by the instrument and accounts for some of the detection bias towards sea salt particles in the ambient data set.

Patent
26 Feb 2016
TL;DR: In this article, a polychromatic grating-coupled backlight employs a grating coupler to diffractively split and redirect collimated light coupled into a light guide.
Abstract: Polychromatic backlighting employs a grating coupler to diffractively split and redirect collimated light coupled into a light guide. A polychromatic grating-coupled backlight includes a light guide configured to guide light and a light source to provide collimated polychromatic light. The polychromatic grating-coupled backlight further includes the grating coupler diffractively split and redirect to provide a plurality of light beams. Each light beam of the plurality represents a respective different color of the polychromatic light and is configured to propagate within the light guide as guided light at a color-specific, non-zero propagation angle corresponding to the respective different color of polychromatic light. An electronic display includes the polychromatic grating-coupled backlight and further includes a diffraction grating to diffractively couple out a portion of the guided light and a light valve array to modulate the coupled-out light as an electronic display pixel.

Posted Content
TL;DR: In this paper, the excess of events in the diphoton final state near 750 GeV observed by ATLAS and CMS can be explained within the NMSSM near the R-symmetry limit.
Abstract: The excess of events in the diphoton final state near 750 GeV observed by ATLAS and CMS can be explained within the NMSSM near the R-symmetry limit. Both scalars beyond the Standard Model Higgs boson have masses near 750 GeV, mix strongly, and share sizeable production cross sections in association with b-quarks as well as branching fractions into a pair of very light pseudoscalars. Pseudoscalars with a mass of ~ 210 MeV decay into collimated diphotons, whereas pseudoscalars with a mass of ~ 500-550 MeV can decay either into collimated diphotons or into three pi^0 resulting in collimated photon jets. Various such scenarios are discussed; the dominant constraints on the latter scenario originate from bounds on radiative Upsilon decays, but they allow for a signal cross section up to 6.7 fb times the acceptance for collimated multiphotons to pass as a single photon.