scispace - formally typeset
Search or ask a question
Topic

Collision avoidance

About: Collision avoidance is a research topic. Over the lifetime, 8014 publications have been published within this topic receiving 111414 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper reformulated the manipulator con trol problem as direct control of manipulator motion in operational space—the space in which the task is originally described—rather than as control of the task's corresponding joint space motion obtained only after geometric and geometric transformation.
Abstract: This paper presents a unique real-time obstacle avoidance approach for manipulators and mobile robots based on the artificial potential field concept. Collision avoidance, tradi tionally considered a high level planning problem, can be effectively distributed between different levels of control, al lowing real-time robot operations in a complex environment. This method has been extended to moving obstacles by using a time-varying artificial patential field. We have applied this obstacle avoidance scheme to robot arm mechanisms and have used a new approach to the general problem of real-time manipulator control. We reformulated the manipulator con trol problem as direct control of manipulator motion in oper ational space—the space in which the task is originally described—rather than as control of the task's corresponding joint space motion obtained only after geometric and kine matic transformation. Outside the obstacles' regions of influ ence, we caused the end effector to move in a straight line with an...

6,515 citations

Book
01 Jul 1990
TL;DR: This paper reformulated the manipulator control problem as direct control of manipulator motion in operational space-the space in which the task is originally described-rather than as control of the task's corresponding joint space motion obtained only after geometric and kinematic transformation.
Abstract: This paper presents a unique real-time obstacle avoidance approach for manipulators and mobile robots based on the artificial potential field concept. Collision avoidance, tradi tionally considered a high level planning problem, can be effectively distributed between different levels of control, al lowing real-time robot operations in a complex environment. This method has been extended to moving obstacles by using a time-varying artificial patential field. We have applied this obstacle avoidance scheme to robot arm mechanisms and have used a new approach to the general problem of real-time manipulator control. We reformulated the manipulator con trol problem as direct control of manipulator motion in oper ational space—the space in which the task is originally described—rather than as control of the task's corresponding joint space motion obtained only after geometric and kine matic transformation. Outside the obstacles' regions of influ ence, we caused the end effector to move in a straight line with an...

3,063 citations

Journal ArticleDOI
TL;DR: This approach, designed for mobile robots equipped with synchro-drives, is derived directly from the motion dynamics of the robot and safely controlled the mobile robot RHINO in populated and dynamic environments.
Abstract: This approach, designed for mobile robots equipped with synchro-drives, is derived directly from the motion dynamics of the robot. In experiments, the dynamic window approach safely controlled the mobile robot RHINO at speeds of up to 95 cm/sec, in populated and dynamic environments.

2,886 citations

Book ChapterDOI
09 Jun 2011
TL;DR: This paper presents a formal approach to reciprocal n-body collision avoidance, where multiple mobile robots need to avoid collisions with each other while moving in a common workspace, and derives sufficient conditions for collision-free motion by reducing the problem to solving a low-dimensional linear program.
Abstract: In this paper, we present a formal approach to reciprocal n-body collision avoidance, where multiple mobile robots need to avoid collisions with each other while moving in a common workspace In our formulation, each robot acts fully independently, and does not communicate with other robots Based on the definition of velocity obstacles [5], we derive sufficient conditions for collision-free motion by reducing the problem to solving a low-dimensional linear program We test our approach on several dense and complex simulation scenarios involving thousands of robots and compute collision-free actions for all of them in only a few milliseconds To the best of our knowledge, this method is the first that can guarantee local collision-free motion for a large number of robots in a cluttered workspace

1,464 citations

Journal ArticleDOI
TL;DR: A review of motion planning techniques implemented in the intelligent vehicles literature, with a description of the technique used by research teams, their contributions in motion planning, and a comparison among these techniques is presented.
Abstract: Intelligent vehicles have increased their capabilities for highly and, even fully, automated driving under controlled environments. Scene information is received using onboard sensors and communication network systems, i.e., infrastructure and other vehicles. Considering the available information, different motion planning and control techniques have been implemented to autonomously driving on complex environments. The main goal is focused on executing strategies to improve safety, comfort, and energy optimization. However, research challenges such as navigation in urban dynamic environments with obstacle avoidance capabilities, i.e., vulnerable road users (VRU) and vehicles, and cooperative maneuvers among automated and semi-automated vehicles still need further efforts for a real environment implementation. This paper presents a review of motion planning techniques implemented in the intelligent vehicles literature. A description of the technique used by research teams, their contributions in motion planning, and a comparison among these techniques is also presented. Relevant works in the overtaking and obstacle avoidance maneuvers are presented, allowing the understanding of the gaps and challenges to be addressed in the next years. Finally, an overview of future research direction and applications is given.

1,162 citations


Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
2023547
20221,269
2021503
2020621
2019661