scispace - formally typeset
Search or ask a question
Topic

Collision avoidance

About: Collision avoidance is a research topic. Over the lifetime, 8014 publications have been published within this topic receiving 111414 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The authors develop and demonstrate a method based on the closed-loop rapidly-exploring random tree algorithm and three variations of it that are able to generate collision free paths for the different types of UAVs among moving obstacles of different numbers, approaching angles, and speeds.
Abstract: The ability to avoid collisions with moving obstacles, such as commercial aircraft is critical to the safe operation of unmanned aerial vehicles (UAVs) and other air traffic. This paper presents the design and implementation of sampling-based path planning methods for a UAV to avoid collision with commercial aircraft and other moving obstacles. In detail, the authors develop and demonstrate a method based on the closed-loop rapidly-exploring random tree algorithm and three variations of it. The variations are: 1) simplification of trajectory generation strategy; 2) utilization of intermediate waypoints; 3) collision prediction using reachable set. The methods were validated in software-in-the-loop simulations, hardware-in-the-loop simulations, and real flight experiments. It is shown that the algorithms are able to generate collision free paths in real time for the different types of UAVs among moving obstacles of different numbers, approaching angles, and speeds.

217 citations

Journal ArticleDOI
TL;DR: An innovative and simple solution for obstacle detection and collision avoidance of unmanned aerial vehicles (UAVs) optimized for and evaluated with quadrotors using low-cost ultrasonic and infrared range finders.
Abstract: This paper demonstrates an innovative and simple solution for obstacle detection and collision avoidance of unmanned aerial vehicles (UAVs) optimized for and evaluated with quadrotors. The sensors exploited in this paper are low-cost ultrasonic and infrared range finders, which are much cheaper though noisier than more expensive sensors such as laser scanners. This needs to be taken into consideration for the design, implementation, and parametrization of the signal processing and control algorithm for such a system, which is the topic of this paper. For improved data fusion, inertial and optical flow sensors are used as a distance derivative for reference. As a result, a UAV is capable of distance controlled collision avoidance, which is more complex and powerful than comparable simple solutions. At the same time, the solution remains simple with a low computational burden. Thus, memory and time-consuming simultaneous localization and mapping is not required for collision avoidance.

210 citations

Patent
01 Aug 2006
TL;DR: In this paper, the possibility of a collision between a host vehicle and any other vehicles is assessed by receiving signals from the transmitter/receivers of each other vehicle, and when a received signal contains additional information of interest about a possible collision involving the host vehicle, analyzing the extracted positional information to determine whether any signals contain additional information that might indicate a collision.
Abstract: Method for avoiding collisions between a host vehicle and other vehicles in which the position of the vehicles is determined, the vehicles are equipped with a transmitter/receiver, and in the host vehicle, the possibility of a collision involving the host vehicle is assessed by receiving signals from the transmitter/receivers of each other vehicle, analyzing the received signals to extract positional information about the transmitter/receivers from each signal, and when a received signal contains additional information of interest about a possible collision involving the host vehicle, analyzing the extracted positional information to determine whether any signals contain additional information of interest about a possible collision involving the host vehicle. Additional information is extracted only from such signals and analyzed to ascertain whether a collision between the host vehicle and any other vehicles is likely to occur in order to enable action to be taken to prevent the collision, e.g., evasive action.

210 citations

Journal ArticleDOI
TL;DR: A new approach for the calculation of the trigger time of an emergency brake that simultaneously considers all physically possible trajectories of the object and host vehicle and the orientation of the vehicles is incorporated into the collision estimation.
Abstract: The autonomous emergency brake (AEB) is an active safety function for vehicles which aims to reduce the severity of a collision. An AEB performs a full brake when an accident becomes unavoidable. Even if this system cannot, in general, avoid the accident, it reduces the energy of the crash impact and is therefore referred to as a collision mitigation system. A new approach for the calculation of the trigger time of an emergency brake will be presented. The algorithm simultaneously considers all physically possible trajectories of the object and host vehicle. It can be applied to all different scenarios including rear-end collisions, collisions at intersections, and collisions with oncoming vehicles. Thus, 63% of possible accidents are addressed. The approach accounts for the object and host vehicles' dimensions. Unlike previous work, the orientation of the vehicles is incorporated into the collision estimation.

209 citations

Proceedings ArticleDOI
19 May 2008
TL;DR: A set of potential function components to assist an automated or semi-automated vehicle in navigating a multi-lane, populated highway is presented, constructed as a superposition of disparate functions for lane- keeping, road-staying, speed preference, and vehicle avoidance and passing.
Abstract: We present a set of potential function components to assist an automated or semi-automated vehicle in navigating a multi-lane, populated highway. The resulting potential field is constructed as a superposition of disparate functions for lane- keeping, road-staying, speed preference, and vehicle avoidance and passing. The construction of the vehicle avoidance potential is of primary importance, incorporating the structure and protocol of laned highway driving. Particularly, the shape and dimensions of the potential field behind each obstacle vehicle can appropriately encourage control vehicle slowing and/or passing, depending on the cars' velocities and surrounding traffic. Hard barriers on roadway edges and soft boundaries between navigable lanes keep the vehicle on the highway, with a preference to travel in a lane center.

208 citations


Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
2023547
20221,269
2021503
2020621
2019661