scispace - formally typeset
Search or ask a question
Topic

Collision avoidance

About: Collision avoidance is a research topic. Over the lifetime, 8014 publications have been published within this topic receiving 111414 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a distributed model predictive control (DMPC) algorithm was proposed to generate trajectories in real-time for multiple robots in point-to-point transition tasks.
Abstract: We present a distributed model predictive control (DMPC) algorithm to generate trajectories in real-time for multiple robots. We adopted the \textit{on-demand collision avoidance} method presented in previous work to efficiently compute non-colliding trajectories in transition tasks. An event-triggered replanning strategy is proposed to account for disturbances. Our simulation results show that the proposed collision avoidance method can reduce, on average, around 50% of the travel time required to complete a multi-agent point-to-point transition when compared to the well-studied Buffered Voronoi Cells (BVC) approach. Additionally, it shows a higher success rate in transition tasks with a high density of agents, with more than 90% success rate with 30 palm-sized quadrotor agents in a 18 m^3 arena. The approach was experimentally validated with a swarm of up to 20 drones flying in close proximity.

85 citations

Journal ArticleDOI
TL;DR: In this paper, a deep neural network is used to approximate a numeric table for collision avoidance in an aircraft collision avoidance system. But the use of deep neural networks does not address the high dimensionality of the state space, which leads to very large tables.
Abstract: One approach to designing decision making logic for an aircraft collision avoidance system frames the problem as a Markov decision process and optimizes the system using dynamic programming. The resulting collision avoidance strategy can be represented as a numeric table. This methodology has been used in the development of the Airborne Collision Avoidance System X (ACAS X) family of collision avoidance systems for manned and unmanned aircraft, but the high dimensionality of the state space leads to very large tables. To improve storage efficiency, a deep neural network is used to approximate the table. With the use of an asymmetric loss function and a gradient descent algorithm, the parameters for this network can be trained to provide accurate estimates of table values while preserving the relative preferences of the possible advisories for each state. By training multiple networks to represent subtables, the network also decreases the required runtime for computing the collision avoidance advisory. Simulation studies show that the network improves the safety and efficiency of the collision avoidance system. Because only the network parameters need to be stored, the required storage space is reduced by a factor of 1000, enabling the collision avoidance system to operate using current avionics systems.

85 citations

Journal ArticleDOI
TL;DR: Experiences with the Toyota systems differed by driver age and gender to a greater degree than in previous surveys, suggesting that the responses of drivers may begin to differ as crash avoidance technology becomes available on a wider variety of vehicles.

85 citations

Proceedings ArticleDOI
21 Mar 2013
TL;DR: This work proposes a novel algorithm for extending existing collision avoidance algorithms to perform approximate, long-range collision avoidance for distant agent groups to efficiently compute trajectories that are smoother than those obtained with state-of-the-art techniques and at faster rates.
Abstract: Local collision avoidance algorithms in crowd simulation often ignore agents beyond a neighborhood of a certain size. This cutoff can result in sharp changes in trajectory when large groups of agents enter or exit these neighborhoods. In this work, we exploit the insight that exact collision avoidance is not necessary between agents at such large distances, and propose a novel algorithm for extending existing collision avoidance algorithms to perform approximate, long-range collision avoidance. Our formulation performs long-range collision avoidance for distant agent groups to efficiently compute trajectories that are smoother than those obtained with state-of-the-art techniques and at faster rates.Another issue often sidestepped in existing work is that discrete and continuum collision avoidance algorithms have different regions of applicability. For example, low-density crowds cannot be modeled as a continuum, while high-density crowds can be expensive to model using discrete methods. We formulate a hybrid technique for crowd simulation which can accurately and efficiently simulate crowds at any density with seamless transitions between continuum and discrete representations. Our approach blends results from continuum and discrete algorithms, based on local density and velocity variance. In addition to being robust across a variety of group scenarios, it is also highly efficient, running at interactive rates for thousands of agents on portable systems.

85 citations

Book ChapterDOI
01 Jan 2016
TL;DR: This paper presents an approach that allows a quadrotor with a single monocular camera to locally generate collision-free waypoints and demonstrates the validity of the approach in challenging environments where it is demonstrated that the pose variation during hovering is already sufficient to obtain suitable depth maps.
Abstract: Automatic obstacle detection and avoidance is a key component for the success of micro-aerial vehicles (MAVs) in the future. As the payload of MAVs is highly constrained, cameras are attractive sensors because they are both lightweight and provide rich information about the environment. In this paper, we present an approach that allows a quadrotor with a single monocular camera to locally generate collision-free waypoints. We acquire a small set of images while the quadrotor is hovering from which we compute a dense depth map. Based on this depth map, we render a 2D scan and generate a suitable waypoint for navigation. In our experiments, we found that the pose variation during hovering is already sufficient to obtain suitable depth maps. The computation takes less than one second which renders our approach applicable for obstacle avoidance in real-time. We demonstrate the validity of our approach in challenging environments where we navigate a Parrot Ardrone quadrotor successfully through narrow passages including doors, boxes, and people.

85 citations


Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
2023547
20221,269
2021503
2020621
2019661