scispace - formally typeset
Search or ask a question
Topic

Color-glass condensate

About: Color-glass condensate is a research topic. Over the lifetime, 885 publications have been published within this topic receiving 35169 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A brief review of recent theoretical developments and related phenomenological approaches for understanding the initial state of heavy-ion collisions, with emphasis on the Color Glass Condensate formalism, can be found in this paper.
Abstract: We present a brief review of recent theoretical developments and related phenomenological approaches for understanding the initial state of heavy-ion collisions, with emphasis on the Color Glass Condensate formalism.

27 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of nuclear thickness on the production of a glasma state in the McLerran-Venugopalan model within the color glass condensate framework were investigated.
Abstract: We present our work on the simulation of the early stages of heavy-ion collisions with finite longitudinal thickness in the laboratory frame in $3+1$ dimensions. In particular we study the effects of nuclear thickness on the production of a glasma state in the McLerran-Venugopalan model within the color glass condensate framework. A finite thickness enables us to describe nuclei at lower energies, but forces us to abandon boost invariance. As a consequence, random classical color sources within the nuclei have to be included in the simulation, which is achieved by using the colored particle-in-cell method. We show that the description in the laboratory frame agrees with boost-invariant approaches as a limiting case. Furthermore we investigate collisions beyond boost invariance, in particular the pressure anisotropy in the glasma.

27 citations

Journal ArticleDOI
TL;DR: In this paper, the color glass condensate (CGC) density matrix was introduced, which is consistent with understanding the CGC as an effective theory after integration of part of the hadronic degrees of freedom.
Abstract: We introduce the notion of the Color Glass Condensate (CGC) density matrix $\hat\rho$. This generalizes the concept of probability density for the distribution of the color charges in the hadronic wave function and is consistent with understanding the CGC as an effective theory after integration of part of the hadronic degrees of freedom. We derive the evolution equations for the density matrix and show that the JIMWLK evolution equation arises here as the evolution of diagonal matrix elements of $\hat\rho$ in the color charge density basis. We analyze the behavior of this density matrix under high energy evolution and show that its purity decreases with energy. We show that the evolution equation for the density matrix has the celebrated Kossakowsky-Lindblad form describing the non-unitary evolution of the density matrix of an open system. Additionally, we consider the dilute limit and demonstrate that, at large rapidity, the entanglement entropy of the density matrix grows linearly with rapidity according to $d S_e / d y = \gamma$, where $\gamma$ is the leading BFKL eigenvalue. We also discuss the evolution of $\hat\rho$ in the saturated regime and relate it to the Levin-Tuchin law and find that the entropy again grows linearly with rapidity, but at a slower rate. By analyzing the dense and dilute regimes of the full density matrix we are able to establish a duality between the regimes. Finally we introduce the Wigner functional derived from this density matrix and discuss how it can be used to determine the distribution of color currents, which may be instrumental in understanding dynamical features of QCD at high energy.

26 citations

Journal ArticleDOI
TL;DR: In this article, the photoproduction of ω mesons in ultra-peripheral heavy ion collisions at the BNL Relativistic Heavy Ion Collider (RHIC) and CERN Large Hadron Collider (LHC) energies in the dipole approach and within two phenomenological models based on the color glass condensate (CGC) formalism.
Abstract: We investigate the photoproduction of {rho} mesons in ultraperipheral heavy ion collisions at the BNL Relativistic Heavy Ion Collider (RHIC) and CERN Large Hadron Collider (LHC) energies in the dipole approach and within two phenomenological models based on the color glass condensate (CGC) formalism. We estimate the integrated cross section and rapidity distribution for meson production and compare our predictions with the data from the STAR Collaboration. In particular, we demonstrate that the total cross section at RHIC is strongly dependent on the energy behavior of the dipole-target cross section at low energies, which is not well determined in the dipole approach. In contrast, the predictions at midrapidities at RHIC and in the full rapidity at LHC are under theoretical control and can be used to test QCD dynamics at high energies.

26 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that in proton-lead (p+Pb) collisions at the LHC, the Color Glass Condensate (CGC) and hydrodynamics lead to qualitatively different behavior of the average transverse momentum with particle rapidity.

26 citations


Network Information
Related Topics (5)
Quantum chromodynamics
47.1K papers, 1.2M citations
92% related
Quark
43.3K papers, 951K citations
92% related
Higgs boson
33.6K papers, 961.7K citations
90% related
Supersymmetry
29.7K papers, 1.1M citations
89% related
Neutrino
45.9K papers, 1M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202321
202244
202127
202022
201951
201833