scispace - formally typeset
Search or ask a question
Topic

Color space

About: Color space is a research topic. Over the lifetime, 17653 publications have been published within this topic receiving 256148 citations. The topic is also known as: color scale.


Papers
More filters
Proceedings ArticleDOI
04 Jan 1998
TL;DR: In contrast with filters that operate on the three bands of a color image separately, a bilateral filter can enforce the perceptual metric underlying the CIE-Lab color space, and smooth colors and preserve edges in a way that is tuned to human perception.
Abstract: Bilateral filtering smooths images while preserving edges, by means of a nonlinear combination of nearby image values. The method is noniterative, local, and simple. It combines gray levels or colors based on both their geometric closeness and their photometric similarity, and prefers near values to distant values in both domain and range. In contrast with filters that operate on the three bands of a color image separately, a bilateral filter can enforce the perceptual metric underlying the CIE-Lab color space, and smooth colors and preserve edges in a way that is tuned to human perception. Also, in contrast with standard filtering, bilateral filtering produces no phantom colors along edges in color images, and reduces phantom colors where they appear in the original image.

8,738 citations

Journal ArticleDOI
TL;DR: This work uses a simple statistical analysis to impose one image's color characteristics on another by choosing an appropriate source image and applying its characteristic to another image.
Abstract: We use a simple statistical analysis to impose one image's color characteristics on another. We can achieve color correction by choosing an appropriate source image and apply its characteristic to another image.

2,615 citations

Proceedings ArticleDOI
TL;DR: Two new color indexing techniques are described, one of which is a more robust version of the commonly used color histogram indexing and the other which is an example of a new approach tocolor indexing that contains only their dominant features.
Abstract: We describe two new color indexing techniques. The first one is a more robust version of the commonly used color histogram indexing. In the index we store the cumulative color histograms. The L1-, L2-, L(infinity )-distance between two cumulative color histograms can be used to define a similarity measure of these two color distributions. We show that this method produces slightly better results than color histogram methods, but it is significantly more robust with respect to the quantization parameter of the histograms. The second technique is an example of a new approach to color indexing. Instead of storing the complete color distributions, the index contains only their dominant features. We implement this approach by storing the first three moments of each color channel of an image in the index, i.e., for a HSV image we store only 9 floating point numbers per image. The similarity function which is used for the retrieval is a weighted sum of the absolute differences between corresponding moments. Our tests clearly demonstrate that a retrieval based on this technique produces better results and runs faster than the histogram-based methods.

1,952 citations

Journal ArticleDOI
TL;DR: This survey provides a summary of color image segmentation techniques available now based on monochrome segmentation approaches operating in different color spaces and some novel approaches such as fuzzy method and physics-based method are investigated.

1,682 citations

Proceedings ArticleDOI
23 Aug 1978
TL;DR: A set of alternative models of the RGB monitor gamut based on the perceptual variables hue, saturation, and value (V) or brightness (L) are presented and algorithms for transforming between these models are derived.
Abstract: Digital control of color television monitors—in particular, via frame buffers—has added precise control of a large subset of human colorspace to the capabilities of computer graphics. This subset is the gamut of colors spanned by the red, green, and blue (RGB) electron guns exciting their respective phosphors. It is called the RGB monitor gamut. Full-blown color theory is a quite complex subject involving physics, psychology, and physiology, but restriction to the RGB monitor gamut simplifies matters substantially. It is linear, for example, and admits to familiar spatial representations. This paper presents a set of alternative models of the RGB monitor gamut based on the perceptual variables hue (H), saturation (S), and value (V) or brightness (L). Algorithms for transforming between these models are derived. Particular emphasis is placed on an RGB to HSV non-trigonometric pair of transforms which have been used successfully for about four years in frame buffer painting programs. These are fast, accurate, and adequate in many applications. Computationally more difficult transform pairs are sometimes necessary, however. Guidelines for choosing among the models are provided. Psychophysical corrections are described within the context of the definitions established by the NTSC (National Television Standards Committee).

1,061 citations


Network Information
Related Topics (5)
Image processing
229.9K papers, 3.5M citations
84% related
Feature (computer vision)
128.2K papers, 1.7M citations
84% related
Pixel
136.5K papers, 1.5M citations
83% related
Image segmentation
79.6K papers, 1.8M citations
81% related
Feature extraction
111.8K papers, 2.1M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023131
2022324
2021323
2020491
2019601
2018591