Topic
Colossal magnetoresistance
About: Colossal magnetoresistance is a(n) research topic. Over the lifetime, 3658 publication(s) have been published within this topic receiving 130104 citation(s).
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: A review of the metal-insulator transition can be found in this article, where a pedagogical introduction to the subject is given, as well as a comparison between experimental results and theoretical achievements.
Abstract: Metal-insulator transitions are accompanied by huge resistivity changes, even over tens of orders of magnitude, and are widely observed in condensed-matter systems. This article presents the observations and current understanding of the metal-insulator transition with a pedagogical introduction to the subject. Especially important are the transitions driven by correlation effects associated with the electron-electron interaction. The insulating phase caused by the correlation effects is categorized as the Mott Insulator. Near the transition point the metallic state shows fluctuations and orderings in the spin, charge, and orbital degrees of freedom. The properties of these metals are frequently quite different from those of ordinary metals, as measured by transport, optical, and magnetic probes. The review first describes theoretical approaches to the unusual metallic states and to the metal-insulator transition. The Fermi-liquid theory treats the correlations that can be adiabatically connected with the noninteracting picture. Strong-coupling models that do not require Fermi-liquid behavior have also been developed. Much work has also been done on the scaling theory of the transition. A central issue for this review is the evaluation of these approaches in simple theoretical systems such as the Hubbard model and $t\ensuremath{-}J$ models. Another key issue is strong competition among various orderings as in the interplay of spin and orbital fluctuations. Experimentally, the unusual properties of the metallic state near the insulating transition have been most extensively studied in $d$-electron systems. In particular, there is revived interest in transition-metal oxides, motivated by the epoch-making findings of high-temperature superconductivity in cuprates and colossal magnetoresistance in manganites. The article reviews the rich phenomena of anomalous metallicity, taking as examples Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Ru compounds. The diverse phenomena include strong spin and orbital fluctuations, mass renormalization effects, incoherence of charge dynamics, and phase transitions under control of key parameters such as band filling, bandwidth, and dimensionality. These parameters are experimentally varied by doping, pressure, chemical composition, and magnetic fields. Much of the observed behavior can be described by the current theory. Open questions and future problems are also extracted from comparison between experimental results and theoretical achievements.
5,274 citations
[...]
TL;DR: In this paper, it was shown that both electrical conduction and ferromagnetic coupling in these compounds arise from a double exchange process, and a quantitative relation was developed between electrical conductivity and the Ferromagnetic Curie temperature.
Abstract: Recently, Jonker and Van Santen have found an empirical correlation between electrical conduction and ferromagnetism in certain compounds of manganese with perovskite structure. This observed correlation is herein interpreted in terms of those principles governing the interaction of the $d$-shells of the transition metals which were enunciated in the first paper of this series. Both electrical conduction and ferromagnetic coupling in these compounds are found to arise from a double exchange process, and a quantitative relation is developed between electrical conductivity and the ferromagnetic Curie temperature.
4,843 citations
[...]
TL;DR: A negative isotropic magnetoresistance effect has been observed in thin oxide films of perovskite-like La0.67Ca0.33MnOx, which could be useful for various magnetic and electric device applications if the observed effects of material processing are optimized.
Abstract: A negative isotropic magnetoresistance effect more than three orders of magnitude larger than the typical giant magnetoresistance of some superlattice films has been observed in thin oxide films of perovskite-like La0.67Ca0.33MnOx. Epitaxial films that are grown on LaAIO3 substrates by laser ablation and suitably heat treated exhibit magnetoresistance values as high as 127,000 percent near 77 kelvin and ∼1300 percent near room temperature. Such a phenomenon could be useful for various magnetic and electric device applications if the observed effects of material processing are optimized. Possible mechanisms for the observed effect are discussed.
3,944 citations
[...]
TL;DR: The electrical resistivity of Fe-Cr-Fe layers with antiferromagnetic interlayer exchange increases when the magnetizations of the Fe layers are aligned antiparallel, much stronger than the usual anisotropic magnetoresistance.
Abstract: The electrical resistivity of Fe-Cr-Fe layers with antiferromagnetic interlayer exchange increases when the magnetizations of the Fe layers are aligned antiparallel. The effect is much stronger than the usual anisotropic magnetoresistance and further increases in structures with more than two Fe layers. It can be explained in terms of spin-flip scattering of conduction electrons caused by the antiparallel alignment of the magnetization.
3,438 citations
[...]
TL;DR: The samples show a drop in the resistivity at the magnetic transition, and the existence of magnetic polarons seems to dominate the electric transport in this region.
Abstract: At room temperature a large magnetoresistance, \ensuremath{\Delta}R/R(H=0), of 60% has been observed in thin magnetic films of perovskitelike La-Ba-Mn-O. The films were grown epitaxially on ${\mathrm{SrTiO}}_{3}$ substrates by off-axis laser deposition. In the as-deposited state, the Curie temperature and the saturation magnetization were considerably lower compared to bulk samples, but were increased by a subsequent heat treatment. The samples show a drop in the resistivity at the magnetic transition, and the existence of magnetic polarons seems to dominate the electric transport in this region.
3,345 citations