scispace - formally typeset
Search or ask a question
Topic

Comb generator

About: Comb generator is a research topic. Over the lifetime, 1298 publications have been published within this topic receiving 23782 citations.


Papers
More filters
Journal ArticleDOI
20 Dec 2007-Nature
TL;DR: This work reports a substantially different approach to comb generation, in which equally spaced frequency markers are produced by the interaction between a continuous-wave pump laser of a known frequency with the modes of a monolithic ultra-high-Q microresonator via the Kerr nonlinearity.
Abstract: Optical frequency combs provide equidistant frequency markers in the infrared, visible and ultraviolet, and can be used to link an unknown optical frequency to a radio or microwave frequency reference. Since their inception, frequency combs have triggered substantial advances in optical frequency metrology and precision measurements and in applications such as broadband laser-based gas sensing and molecular fingerprinting. Early work generated frequency combs by intra-cavity phase modulation; subsequently, frequency combs have been generated using the comb-like mode structure of mode-locked lasers, whose repetition rate and carrier envelope phase can be stabilized. Here we report a substantially different approach to comb generation, in which equally spaced frequency markers are produced by the interaction between a continuous-wave pump laser of a known frequency with the modes of a monolithic ultra-high-Q microresonator via the Kerr nonlinearity. The intrinsically broadband nature of parametric gain makes it possible to generate discrete comb modes over a 500-nm-wide span (approximately 70 THz) around 1,550 nm without relying on any external spectral broadening. Optical-heterodyne-based measurements reveal that cascaded parametric interactions give rise to an optical frequency comb, overcoming passive cavity dispersion. The uniformity of the mode spacing has been verified to within a relative experimental precision of 7.3 x 10(-18). In contrast to femtosecond mode-locked lasers, this work represents a step towards a monolithic optical frequency comb generator, allowing considerable reduction in size, complexity and power consumption. Moreover, the approach can operate at previously unattainable repetition rates, exceeding 100 GHz, which are useful in applications where access to individual comb modes is required, such as optical waveform synthesis, high capacity telecommunications or astrophysical spectrometer calibration.

1,950 citations

Journal ArticleDOI
13 Dec 2012-Nature
TL;DR: A compact, broadband, semiconductor frequency comb generator that operates in the mid-infrared, and it is demonstrated that the modes of a continuous-wave, free-running, broadband quantum cascade laser are phase-locked.
Abstract: A broadband, compact, all-electrically driven mid-infrared frequency comb based on a quantum cascade laser widens the scope of application of combs in this frequency range beyond that of sources which depend on a chain of optical components. Optical frequency combs are light sources that produce a comb-like spectrum, with sharp equidistant frequency modes, and have many uses in metrology and spectroscopy applications. The mid-infrared regime is particularly important for molecular fingerprinting, but so far the comb sources in this wavelength regime are bulky and rely on a chain of optical components. For wide practical applications, an electrically injected, compact scheme is desired. Andreas Hugi et al. now demonstrate a mid-infrared frequency comb generator based on a semiconductor device, a continuous-wave quantum cascade laser. Optical frequency combs1 act as rulers in the frequency domain and have opened new avenues in many fields such as fundamental time metrology, spectroscopy and frequency synthesis. In particular, spectroscopy by means of optical frequency combs has surpassed the precision and speed of Fourier spectrometers. Such a spectroscopy technique is especially relevant for the mid-infrared range, where the fundamental rotational–vibrational bands of most light molecules are found2. Most mid-infrared comb sources are based on down-conversion of near-infrared, mode-locked, ultrafast lasers using nonlinear crystals3. Their use in frequency comb spectroscopy applications has resulted in an unequalled combination of spectral coverage, resolution and sensitivity4,5,6,7. Another means of comb generation is pumping an ultrahigh-quality factor microresonator with a continuous-wave laser8,9,10. However, these combs depend on a chain of optical components, which limits their use. Therefore, to widen the spectroscopic applications of such mid-infrared combs, a more direct and compact generation scheme, using electrical injection, is preferable. Here we present a compact, broadband, semiconductor frequency comb generator that operates in the mid-infrared. We demonstrate that the modes of a continuous-wave, free-running, broadband quantum cascade laser11 are phase-locked. Combining mode proliferation based on four-wave mixing with gain provided by the quantum cascade laser leads to a phase relation similar to that of a frequency-modulated laser. The comb centre carrier wavelength is 7 micrometres. We identify a narrow drive current range with intermode beat linewidths narrower than 10 hertz. We find comb bandwidths of 4.4 per cent with an intermode stability of less than or equal to 200 hertz. The intermode beat can be varied over a frequency range of 65 kilohertz by radio-frequency injection. The large gain bandwidth and independent control over the carrier frequency offset and the mode spacing open the way to broadband, compact, all-solid-state mid-infrared spectrometers.

698 citations

Journal ArticleDOI
08 Oct 2018-Nature
TL;DR: A chip-based integration of microresonators and lasers produces a battery-powered comb generator that does not require external lasers, moveable optics or laboratory set-ups and should enable production of highly portable and robust frequency and timing references, sensors and signal sources.
Abstract: Optical frequency combs are broadband sources that offer mutually coherent, equidistant spectral lines with unprecedented precision in frequency and timing for an array of applications1. Frequency combs generated in microresonators through the Kerr nonlinearity require a single-frequency pump laser and have the potential to provide highly compact, scalable and power-efficient devices2,3. Here we demonstrate a device—a laser-integrated Kerr frequency comb generator—that fulfils this potential through use of extremely low-loss silicon nitride waveguides that form both the microresonator and an integrated laser cavity. Our device generates low-noise soliton-mode-locked combs with a repetition rate of 194 gigahertz at wavelengths near 1,550 nanometres using only 98 milliwatts of electrical pump power. The dual-cavity configuration that we use combines the laser and microresonator, demonstrating the flexibility afforded by close integration of these components, and together with the ultra low power consumption should enable production of highly portable and robust frequency and timing references, sensors and signal sources. This chip-based integration of microresonators and lasers should also provide tools with which to investigate the dynamics of comb and soliton generation. Integrating an optical Kerr frequency comb source with an electronically excited laser pump produces a battery-powered comb generator that does not require external lasers, moveable optics or laboratory set-ups.

490 citations

Journal ArticleDOI
TL;DR: A frequency comb spanning an octave via the parametric process of cascaded four-wave mixing in a monolithic, high-Q silicon nitride microring resonator is demonstrated and it is found that the comb can operate in a low-noise state with a 30 dB reduction in noise as the pump frequency is tuned into the cavity resonance.
Abstract: We demonstrate a frequency comb spanning an octave via the parametric process of cascaded four-wave mixing in a monolithic, high-Q silicon nitride microring resonator. The comb is generated from a single-frequency pump laser at 1562 nm and spans 128 THz with a spacing of 226 GHz, which can be tuned slightly with the pump power. In addition, we investigate the RF-noise characteristics of the parametric comb and find that the comb can operate in a low-noise state with a 30-dB reduction in noise as the pump frequency is tuned into the cavity resonance.

455 citations

Journal ArticleDOI
TL;DR: Using a thin-film lithium niobate photonic platform, an electro-optic frequency comb generator is realized that is capable of producing wide and stable spectra, spanning more frequencies than the entire telecommunications L-band.
Abstract: Optical frequency combs consist of equally spaced discrete optical frequency components and are essential tools for optical communications and for precision metrology, timing and spectroscopy. To date, wide-spanning combs are most often generated by mode-locked lasers or dispersion-engineered resonators with third-order Kerr nonlinearity. An alternative comb generation method uses electro-optic (EO) phase modulation in a resonator with strong second-order nonlinearity, resulting in combs with excellent stability and controllability. Previous EO combs, however, have been limited to narrow widths by a weak EO interaction strength and a lack of dispersion engineering in free-space systems. In this work, we overcome these limitations by realizing an integrated EO comb generator in a thin-film lithium niobate photonic platform that features a large electro-optic response, ultra-low optical loss and highly co-localized microwave and optical felds, while enabling dispersion engineering. Our measured EO frequency comb spans more than the entire telecommunications L-band (over 900 comb lines spaced at ~ 10 GHz), and we show that future dispersion engineering can enable octave-spanning combs. Furthermore, we demonstrate the high tolerance of our comb generator to modulation frequency detuning, with frequency spacing finely controllable over seven orders of magnitude (10 Hz to 100 MHz), and utilize this feature to generate dual frequency combs in a single resonator. Our results show that integrated EO comb generators, capable of generating wide and stable comb spectra, are a powerful complement to integrated Kerr combs, enabling applications ranging from spectroscopy to optical communications.

420 citations

Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
85% related
Photonic crystal
43.4K papers, 887K citations
82% related
Resonator
76.5K papers, 1M citations
81% related
Interferometry
58K papers, 824.8K citations
80% related
Amplifier
163.9K papers, 1.3M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202320
202260
20214
202014
201913
201815