Topic

# Combinational logic

About: Combinational logic is a research topic. Over the lifetime, 5465 publications have been published within this topic receiving 108957 citations. The topic is also known as: Combinational circuit & Combinational logic circuit.

##### Papers published on a yearly basis

##### Papers

More filters

•

01 Jan 1994

TL;DR: This book covers techniques for synthesis and optimization of digital circuits at the architectural and logic levels, i.e., the generation of performance-and-or area-optimal circuits representations from models in hardware description languages.

Abstract: From the Publisher:
Synthesis and Optimization of Digital Circuits offers a modern, up-to-date look at computer-aided design (CAD) of very large-scale integration (VLSI) circuits. In particular, this book covers techniques for synthesis and optimization of digital circuits at the architectural and logic levels, i.e., the generation of performance-and/or area-optimal circuits representations from models in hardware description languages. The book provides a thorough explanation of synthesis and optimization algorithms accompanied by a sound mathematical formulation and a unified notation. The text covers the following topics: modern hardware description languages (e.g., VHDL, Verilog); architectural-level synthesis of data flow and control units, including algorithms for scheduling and resource binding; combinational logic optimization algorithms for two-level and multiple-level circuits; sequential logic optimization methods; and library binding techniques, including those applicable to FPGAs.

2,311 citations

••

08 May 1989TL;DR: A set of 31 digital sequential circuits described at the gate level that extend the size and complexity of the ISCAS'85 set of combinational circuits and can serve as benchmarks for researchers interested in sequential test generation, scan-basedtest generation, and mixed sequential/scan-based test generation using partial scan techniques.

Abstract: A set of 31 digital sequential circuits described at the gate level is presented. These circuits extend the size and complexity of the ISCAS'85 set of combinational circuits and can serve as benchmarks for researchers interested in sequential test generation, scan-based test generation, and mixed sequential/scan-based test generation using partial scan techniques. Although all the benchmark circuits are sequential, synchronous, and use only D-type flip-flops, additional interior faults and asynchronous behavior can be introduced by substituting for some or all of the flip-flops their appropriate functional models. The standard functional model of the D flip-flop provides a reference point that is independent of the faults particular to the flip-flop implementation. A testability profile of the benchmarks in the full-scan-mode configuration is discussed. >

1,972 citations

••

TL;DR: A design is developed for a multiplier which generates the product of two numbers using purely combinational logic, i.e., in one gating step, using straightforward diode-transistor logic.

Abstract: It is suggested that the economics of present large-scale scientific computers could benefit from a greater investment in hardware to mechanize multiplication and division than is now common. As a move in this direction, a design is developed for a multiplier which generates the product of two numbers using purely combinational logic, i.e., in one gating step. Using straightforward diode-transistor logic, it appears presently possible to obtain products in under 1, ?sec, and quotients in 3 ?sec. A rapid square-root process is also outlined. Approximate component counts are given for the proposed design, and it is found that the cost of the unit would be about 10 per cent of the cost of a modern large-scale computer.

1,750 citations

••

23 Jun 2002

TL;DR: An end-to-end model is described and validated that enables us to compute the soft error rates (SER) for existing and future microprocessor-style designs and predicts that the SER per chip of logic circuits will increase nine orders of magnitude from 1992 to 2011 and at that point will be comparable to the SERper chip of unprotected memory elements.

Abstract: This paper examines the effect of technology scaling and microarchitectural trends on the rate of soft errors in CMOS memory and logic circuits. We describe and validate an end-to-end model that enables us to compute the soft error rates (SER) for existing and future microprocessor-style designs. The model captures the effects of two important masking phenomena, electrical masking and latching-window masking, which inhibit soft errors in combinational logic. We quantify the SER due to high-energy neutrons in SRAM cells, latches, and logic circuits for feature sizes from 600 nm to 50 nm and clock periods from 16 to 6 fan-out-of-4 inverter delays. Our model predicts that the SER per chip of logic circuits will increase nine orders of magnitude from 1992 to 2011 and at that point will be comparable to the SER per chip of unprotected memory elements. Our result emphasizes that computer system designers must address the risks of soft errors in logic circuits for future designs.

1,506 citations

•

01 Jan 2010TL;DR: Theories are made easier to understand with 200 illustrative examples, and students can test their understanding with over 350 end-of-chapter review questions.

Abstract: Understand the structure, behavior, and limitations of logic machines with this thoroughly updated third edition. Many new topics are included, such as CMOS gates, logic synthesis, logic design for emerging nanotechnologies, digital system testing, and asynchronous circuit design, to bring students up-to-speed with modern developments. The intuitive examples and minimal formalism of the previous edition are retained, giving students a text that is logical and easy to follow, yet rigorous. Kohavi and Jha begin with the basics, and then cover combinational logic design and testing, before moving on to more advanced topics in finite-state machine design and testing. Theory is made easier to understand with 200 illustrative examples, and students can test their understanding with over 350 end-of-chapter review questions.

1,315 citations