scispace - formally typeset
Search or ask a question
Topic

Combined forced and natural convection

About: Combined forced and natural convection is a research topic. Over the lifetime, 13564 publications have been published within this topic receiving 285442 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an experimental and theoretical-numerical investigation has been carried out to extend existing knowledge of velocity and temperature distributions and local heat-transfer coefficients for naturel convection within a horizontal annulus.
Abstract: An experimental and theoretical-numerical investigation has been carried out to extend existing knowledge of velocity and temperature distributions and local heat-transfer coefficients for naturel convection within a horizontal annulus. A Mach—Zehnder interferometer was used to determine temperature distributions and local heat-transfer coefficients experimentally. Results were obtained using water and air at atmospheric pressure with a ratio of gap width to inner-cylinder diameter of 0·8. The Rayleigh number based on the gap width varied from 2·11 × 104to 9·76 × 105. A finite-difference method was used to solve the governing constant-property equations numerically. The Rayleigh number was changed from 102 to 105 with the influence of Prandtl number and diameter ratio obtained near a Rayleigh number of 104. Comparisons between the present experimental and numerical results under similar conditions show good agreement.

716 citations

Journal ArticleDOI
TL;DR: In this paper, Jive k-e, two-equation models are evaluated for their performance in predicting natural convection, forced convection and mixed convection in rooms, as well as an impinging jet flow.
Abstract: In this article, Jive k-e, two-equation models are studied: the standard k-e model, a low-Reynolds-number k-e model, a two-layer k-e model, a two-scale k-e model, and a renormalization group (RNG) k-e model. They are evaluated for their performance in predicting natural convection, forced convection, and mixed convection in rooms, as well as an impinging jet flow. Corresponding experimental data from the literature are used for validation. It is found that the prediction of the mean velocity is more accurate than that of the turbulent velocity. These models are neither able to predict anisotropic turbulence correctly nor to pick up the secondary recirculation of indoor air flow; otherwise the performance of the standard k-e model is good. The RNG k-e model is slightly better than the standard k-e model and is therefore recommended for simulations of indoor airflow. The performance of the other models is not stable.

686 citations

Book
23 Feb 2001
TL;DR: Free and mixed convection boundary-layer flow on non-Newtonian fluids in porous media has been studied in this article for convective flow in buoyant plumes and jets.
Abstract: Chapter Headings. I Convective flows: viscous fluids. Free convection boundary-layer over a vertical flat plate. Mixed convection boundary-layer flow along a vertical flat plate. Free and mixed convection boundary-layer flow past inclined and horizontal plates. Double-diffusive convection. Convective flow in buoyant plumes and jets. Conjugate heat transfer over vertical and horizontal flat plates. Free and mixed convection from cylinders. Free and mixed convection boundary-layer flow over moving surfaces. Unsteady free and mixed convection. II Convective flows: porous media. Free and mixed convection boundary-layer flow on non-Newtonian fluids. Free and mixed convection boundary-layer flow over vertical surfaces in porous media. Free and mixed convection past horizontal and inclined surfaces in porous media. Conjugate free and mixed convection over vertical surfaces in porous media. Free and mixed convection from cylinders and spheres in porous media. Unsteady free and mixed convection in porous media. Non-Darcy free and mixed convection boundary-layer flow in porous media.

664 citations

Book
28 May 2004
TL;DR: In this paper, the authors proposed a method for heat transfer in a composite slab with the Galerkin method and the Finite Element Method (FEM) to solve the heat transfer problem.
Abstract: Preface. 1 Introduction. 1.1 Importance of Heat Transfer. 1.2 Heat Transfer Modes. 1.3 The Laws of Heat Transfer. 1.4 Formulation of Heat Transfer Problems. 1.4.1 Heat transfer from a plate exposed to solar heat flux. 1.4.2 Incandescent lamp. 1.4.3 Systems with a relative motion and internal heat generation. 1.5 Heat Conduction Equation. 1.6 Boundary and Initial Conditions. 1.7 Solution Methodology. 1.8 Summary. 1.9 Exercise. Bibliography. 2 Some Basic Discrete Systems. 2.1 Introduction. 2.2 Steady State Problems. 2.2.1 Heat flow in a composite slab. 2.2.2 Fluid flow network. 2.2.3 Heat transfer in heat sinks (combined conduction-convection). 2.2.4 Analysis of a heat exchanger. 2.3 Transient Heat Transfer Problem (Propagation Problem). 2.4 Summary. 2.5 Exercise. Bibliography. 3 The Finite Elemen t Method. 3.1 Introduction. 3.2 Elements and Shape Functions. 3.2.1 One-dimensional linear element. 3.2.2 One-dimensional quadratic element. 3.2.3 Two-dimensional linear triangular elements. 3.2.4 Area coordinates. 3.2.5 Quadratic triangular elements. 3.2.6 Two-dimensional quadrilateral elements. 3.2.7 Isoparametric elements. 3.2.8 Three-dimensional elements. 3.3 Formulation (Element Characteristics). 3.3.1 Ritz method (Heat balance integral method-Goodman's method). 3.3.2 Rayleigh-Ritz method (Variational method). 3.3.3 The method of weighted residuals. 3.3.4 Galerkin finite element method. 3.4 Formulation for the Heat Conduction Equation. 3.4.1 Variational approach. 3.4.2 The Galerkin method. 3.5 Requirements for Interpolation Functions. 3.6 Summary. 3.7 Exercise. Bibliography. 4 Steady State Heat Conduction in One Dimension. 4.1 Introduction. 4.2 Plane Walls. 4.2.1 Homogeneous wall. 4.2.2 Composite wall. 4.2.3 Finite element discretization. 4.2.4 Wall with varying cross-sectional area. 4.2.5 Plane wall with a heat source: solution by linear elements. 4.2.6 Plane wall with a heat source: solution by quadratic elements. 4.2.7 Plane wall with a heat source: solution by modified quadratic equations (static condensation). 4.3 Radial Heat Flow in a Cylinder. 4.3.1 Cylinder with heat source. 4.4 Conduction-Convection Systems. 4.5 Summary. 4.6 Exercise. Bibliography. 5 Steady State Heat Conduction in Multi-dimensions. 5.1 Introduction. 5.2 Two-dimensional Plane Problems. 5.2.1 Triangular elements. 5.3 Rectangular Elements. 5.4 Plate with Variable Thickness. 5.5 Three-dimensional Problems. 5.6 Axisymmetric Problems. 5.6.1 Galerkin's method for linear triangular axisymmetric elements. 5.7 Summary. 5.8 Exercise. Bibliography. 6 Transient Heat Conduction Analysis. 6.1 Introduction. 6.2 Lumped Heat Capacity System. 6.3 Numerical Solution. 6.3.1 Transient governing equations and boundary and initial conditions. 6.3.2 The Galerkin method. 6.4 One-dimensional Transient State Problem. 6.4.1 Time discretization using the Finite Difference Method (FDM). 6.4.2 Time discretization using the Finite Element Method (FEM). 6.5 Stability. 6.6 Multi-dimensional Transient Heat Conduction. 6.7 Phase Change Problems-Solidification and Melting. 6.7.1 The governing equations. 6.7.2 Enthalpy formulation. 6.8 Inverse Heat Conduction Problems. 6.8.1 One-dimensional heat conduction. 6.9 Summary. 6.10 Exercise. Bibliography. 7 Convection Heat Transfer 173 7.1 Introduction. 7.1.1 Types of fluid-motion-assisted heat transport. 7.2 Navier-Stokes Equations. 7.2.1 Conservation of mass or continuity equation. 7.2.2 Conservation of momentum. 7.2.3 Energy equation. 7.3 Non-dimensional Form of the Governing Equations. 7.3.1 Forced convection. 7.3.2 Natural convection (Buoyancy-driven convection). 7.3.3 Mixed convection. 7.4 The Transient Convection-diffusion Problem. 7.4.1 Finite element solution to convection-diffusion equation. 7.4.2 Extension to multi-dimensions. 7.5 Stability Conditions. 7.6 Characteristic-based Split (CBS) Scheme. 7.6.1 Spatial discretization. 7.6.2 Time-step calculation. 7.6.3 Boundary and initial conditions. 7.6.4 Steady and transient solution methods. 7.7 Artificial Compressibility Scheme. 7.8 Nusselt Number, Drag and Stream Function. 7.8.1 Nusselt number. 7.8.2 Drag calculation. 7.8.3 Stream function. 7.9 Mesh Convergence. 7.10 Laminar Isothermal Flow. 7.10.1 Geometry, boundary and initial conditions. 7.10.2 Solution. 7.11 Laminar Non-isothermal Flow. 7.11.1 Forced convection heat transfer. 7.11.2 Buoyancy-driven convection heat transfer. 7.11.3 Mixed convection heat transfer. 7.12 Introduction to Turbulent Flow. 7.12.1 Solution procedure and result. 7.13 Extension to Axisymmetric Problems. 7.14 Summary. 7.15 Exercise. Bibliography. 8 Convection in Porous Media. 8.1 Introduction. 8.2 Generalized Porous Medium Flow Approach. 8.2.1 Non-dimensional scales. 8.2.2 Limiting cases. 8.3 Discretization Procedure. 8.3.1 Temporal discretization. 8.3.2 Spatial discretization. 8.3.3 Semi- and quasi-implicit forms. 8.4 Non-isothermal Flows. 8.5 Forced Convection. 8.6 Natural Convection. 8.6.1 Constant porosity medium. 8.7 Summary. 8.8 Exercise. Bibliography. 9 Some Examples of Fluid Flow and Heat Transfer Problems. 9.1 Introduction. 9.2 Isothermal Flow Problems. 9.2.1 Steady state problems. 9.2.2 Transient flow. 9.3 Non-isothermal Benchmark Flow Problem. 9.3.1 Backward-facing step. 9.4 Thermal Conduction in an Electronic Package. 9.5 Forced Convection Heat Transfer From Heat Sources. 9.6 Summary. 9.7 Exercise. Bibliography. 10 Implementation of Computer Code. 10.1 Introduction. 10.2 Preprocessing. 10.2.1 Mesh generation. 10.2.2 Linear triangular element data. 10.2.3 Element size calculation. 10.2.4 Shape functions and their derivatives. 10.2.5 Boundary normal calculation. 10.2.6 Mass matrix and mass lumping. 10.2.7 Implicit pressure or heat conduction matrix. 10.3 Main Unit. 10.3.1 Time-step calculation. 10.3.2 Element loop and assembly. 10.3.3 Updating solution. 10.3.4 Boundary conditions. 10.3.5 Monitoring steady state. 10.4 Postprocessing. 10.4.1 Interpolation of data. 10.5 Summary. Bibliography. A Green's Lemma. B Integration Formulae. B.1 Linear Triangles. B.2 Linear Tetrahedron. C Finite Element Assembly Procedure. D Simplified Form of the Navier-Stokes Equations. Index.

653 citations

Book ChapterDOI
28 Jan 2005
TL;DR: The Q12-40 density: ρ ((kg/m) specific heat: Cp (J/kg ·K) dynamic viscosity: ν ≡ μ/ρ (m/s) thermal conductivity: k, (W/m ·K), thermal diffusivity: α, ≡ k/(ρ · Cp) (m /s) Prandtl number: Pr, ≡ ν/α (−−) volumetric compressibility: β, (1/K).
Abstract: Geometry: shape, size, aspect ratio and orientation Flow Type: forced, natural, laminar, turbulent, internal, external Boundary: isothermal (Tw = constant) or isoflux (q̇w = constant) Fluid Type: viscous oil, water, gases or liquid metals Properties: all properties determined at film temperature Tf = (Tw + T∞)/2 Note: ρ and ν ∝ 1/Patm ⇒ see Q12-40 density: ρ ((kg/m) specific heat: Cp (J/kg ·K) dynamic viscosity: μ, (N · s/m) kinematic viscosity: ν ≡ μ/ρ (m/s) thermal conductivity: k, (W/m ·K) thermal diffusivity: α, ≡ k/(ρ · Cp) (m/s) Prandtl number: Pr, ≡ ν/α (−−) volumetric compressibility: β, (1/K)

636 citations


Network Information
Related Topics (5)
Heat transfer
181.7K papers, 2.9M citations
95% related
Reynolds number
68.4K papers, 1.6M citations
92% related
Laminar flow
56K papers, 1.2M citations
91% related
Boundary layer
64.9K papers, 1.4M citations
88% related
Turbulence
112.1K papers, 2.7M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023127
2022248
2021452
2020416
2019425
2018419