Topic

# Commentz-Walter algorithm

About: Commentz-Walter algorithm is a research topic. Over the lifetime, 1058 publications have been published within this topic receiving 36733 citations.

##### Papers published on a yearly basis

##### Papers

More filters

••

Bell Labs

^{1}TL;DR: A simple, efficient algorithm to locate all occurrences of any of a finite number of keywords in a string of text that has been used to improve the speed of a library bibliographic search program by a factor of 5 to 10.

Abstract: This paper describes a simple, efficient algorithm to locate all occurrences of any of a finite number of keywords in a string of text. The algorithm consists of constructing a finite state pattern matching machine from the keywords and then using the pattern matching machine to process the text string in a single pass. Construction of the pattern matching machine takes time proportional to the sum of the lengths of the keywords. The number of state transitions made by the pattern matching machine in processing the text string is independent of the number of keywords. The algorithm has been used to improve the speed of a library bibliographic search program by a factor of 5 to 10.

3,270 citations

••

TL;DR: An algorithm is presented which finds all occurrences of one given string within another, in running time proportional to the sum of the lengths of the strings, showing that the set of concatenations of even palindromes, i.e., the language $\{\alpha \alpha ^R\}^*$, can be recognized in linear time.

Abstract: An algorithm is presented which finds all occurrences of one given string within another, in running time proportional to the sum of the lengths of the strings. The constant of proportionality is low enough to make this algorithm of practical use, and the procedure can also be extended to deal with some more general pattern-matching problems. A theoretical application of the algorithm shows that the set of concatenations of even palindromes, i.e., the language $\{\alpha \alpha ^R\}^*$, can be recognized in linear time. Other algorithms which run even faster on the average are also considered.

3,156 citations

••

TL;DR: The algorithm has the unusual property that, in most cases, not all of the first i.” in another string, are inspected.

Abstract: An algorithm is presented that searches for the location, “il” of the first occurrence of a character string, “pat,” in another string, “string.” During the search operation, the characters of pat are matched starting with the last character of pat. The information gained by starting the match at the end of the pattern often allows the algorithm to proceed in large jumps through the text being searched. Thus the algorithm has the unusual property that, in most cases, not all of the first i characters of string are inspected. The number of characters actually inspected (on the average) decreases as a function of the length of pat. For a random English pattern of length 5, the algorithm will typically inspect i/4 characters of string before finding a match at i. Furthermore, the algorithm has been implemented so that (on the average) fewer than i + patlen machine instructions are executed. These conclusions are supported with empirical evidence and a theoretical analysis of the average behavior of the algorithm. The worst case behavior of the algorithm is linear in i + patlen, assuming the availability of array space for tables linear in patlen plus the size of the alphabet.

2,542 citations

••

TL;DR: In this article, the first occurrence of a string X as a consecutive block within a text Y is found by using a randomized algorithm. But the algorithm requires a constant number of storage locations, and essentially runs in real time.

Abstract: We present randomized algorithms to solve the following string-matching problem and some of its generalizations: Given a string X of length n (the pattern) and a string Y (the text), find the first occurrence of X as a consecutive block within Y. The algorithms represent strings of length n by much shorter strings called fingerprints, and achieve their efficiency by manipulating fingerprints instead of longer strings. The algorithms require a constant number of storage locations, and essentially run in real time. They are conceptually simple and easy to implement. The method readily generalizes to higher-dimensional patternmatching problems.

1,400 citations

••

06 Jan 1992TL;DR: Two string distance functions that are computable in linear time give a lower bound for the edit distance (in the unit cost model), which leads to fast hybrid algorithms for the edited distance based string matching.

Abstract: We study approximate string matching in connection with two string distance functions that are computable in linear time. The first function is based on the so-called $q$-grams. An algorithm is given for the associated string matching problem that finds the locally best approximate occurences of pattern $P$, $|P|=m$, in text $T$, $|T|=n$, in time $O(n\log (m-q))$. The occurences with distance $\leq k$ can be found in time $O(n\log k)$. The other distance function is based on finding maximal common substrings and allows a form of approximate string matching in time $O(n)$. Both distances give a lower bound for the edit distance (in the unit cost model), which leads to fast hybrid algorithms for the edit distance based string matching.

665 citations