scispace - formally typeset
Search or ask a question

Showing papers on "Communication channel published in 2011"


Journal ArticleDOI
22 Jan 2011
TL;DR: The measurement setup comprises the customized versions of Intel's close-source firmware and open-source iwlwifi wireless driver, userspace tools to enable these measurements, access point functionality for controlling both ends of the link, and Matlab scripts for data analysis.
Abstract: We are pleased to announce the release of a tool that records detailed measurements of the wireless channel along with received 802.11 packet traces. It runs on a commodity 802.11n NIC, and records Channel State Information (CSI) based on the 802.11 standard. Unlike Receive Signal Strength Indicator (RSSI) values, which merely capture the total power received at the listener, the CSI contains information about the channel between sender and receiver at the level of individual data subcarriers, for each pair of transmit and receive antennas.Our toolkit uses the Intel WiFi Link 5300 wireless NIC with 3 antennas. It works on up-to-date Linux operating systems: in our testbed we use Ubuntu 10.04 LTS with the 2.6.36 kernel. The measurement setup comprises our customized versions of Intel's close-source firmware and open-source iwlwifi wireless driver, userspace tools to enable these measurements, access point functionality for controlling both ends of the link, and Matlab (or Octave) scripts for data analysis. We are releasing the binary of the modified firmware, and the source code to all the other components.

1,354 citations


Journal ArticleDOI
TL;DR: In this paper, the authors consider a point-to-point data transmission with an energy harvesting transmitter which has a limited battery capacity, communicating in a wireless fading channel, and they consider two objectives: maximizing the throughput by a deadline, and minimizing the transmission completion time of the communication session.
Abstract: Wireless systems comprised of rechargeable nodes have a significantly prolonged lifetime and are sustainable. A distinct characteristic of these systems is the fact that the nodes can harvest energy throughout the duration in which communication takes place. As such, transmission policies of the nodes need to adapt to these harvested energy arrivals. In this paper, we consider optimization of point-to-point data transmission with an energy harvesting transmitter which has a limited battery capacity, communicating in a wireless fading channel. We consider two objectives: maximizing the throughput by a deadline, and minimizing the transmission completion time of the communication session. We optimize these objectives by controlling the time sequence of transmit powers subject to energy storage capacity and causality constraints. We, first, study optimal offline policies. We introduce a directional water-filling algorithm which provides a simple and concise interpretation of the necessary optimality conditions. We show the optimality of an adaptive directional water-filling algorithm for the throughput maximization problem. We solve the transmission completion time minimization problem by utilizing its equivalence to its throughput maximization counterpart. Next, we consider online policies. We use stochastic dynamic programming to solve for the optimal online policy that maximizes the average number of bits delivered by a deadline under stochastic fading and energy arrival processes with causal channel state feedback. We also propose near-optimal policies with reduced complexity, and numerically study their performances along with the performances of the offline and online optimal policies under various different configurations.

1,130 citations


Journal ArticleDOI
TL;DR: This paper offers a survey of the concept of Wireless Body Area Networks, focusing on some applications with special interest in patient monitoring and the communication in a WBAN and its positioning between the different technologies.
Abstract: The increasing use of wireless networks and the constant miniaturization of electrical devices has empowered the development of Wireless Body Area Networks (WBANs). In these networks various sensors are attached on clothing or on the body or even implanted under the skin. The wireless nature of the network and the wide variety of sensors offer numerous new, practical and innovative applications to improve health care and the Quality of Life. The sensors of a WBAN measure for example the heartbeat, the body temperature or record a prolonged electrocardiogram. Using a WBAN, the patient experiences a greater physical mobility and is no longer compelled to stay in the hospital. This paper offers a survey of the concept of Wireless Body Area Networks. First, we focus on some applications with special interest in patient monitoring. Then the communication in a WBAN and its positioning between the different technologies is discussed. An overview of the current research on the physical layer, existing MAC and network protocols is given. Further, cross layer and quality of service is discussed. As WBANs are placed on the human body and often transport private data, security is also considered. An overview of current and past projects is given. Finally, the open research issues and challenges are pointed out.

1,077 citations


Journal ArticleDOI
TL;DR: An exact characterization of the capacity of a network with nodes connected by deterministic channels is obtained, a natural generalization of the celebrated max-flow min-cut theorem for wired networks.
Abstract: In a wireless network with a single source and a single destination and an arbitrary number of relay nodes, what is the maximum rate of information flow achievable? We make progress on this long standing problem through a two-step approach. First, we propose a deterministic channel model which captures the key wireless properties of signal strength, broadcast and superposition. We obtain an exact characterization of the capacity of a network with nodes connected by such deterministic channels. This result is a natural generalization of the celebrated max-flow min-cut theorem for wired networks. Second, we use the insights obtained from the deterministic analysis to design a new quantize-map-and-forward scheme for Gaussian networks. In this scheme, each relay quantizes the received signal at the noise level and maps it to a random Gaussian codeword for forwarding, and the final destination decodes the source's message based on the received signal. We show that, in contrast to existing schemes, this scheme can achieve the cut-set upper bound to within a gap which is independent of the channel parameters. In the case of the relay channel with a single relay as well as the two-relay Gaussian diamond network, the gap is 1 bit/s/Hz. Moreover, the scheme is universal in the sense that the relays need no knowledge of the values of the channel parameters to (approximately) achieve the rate supportable by the network. We also present extensions of the results to multicast networks, half-duplex networks, and ergodic networks.

1,034 citations


Posted Content
TL;DR: This paper considers optimization of point-to-point data transmission with an energy harvesting transmitter which has a limited battery capacity, communicating in a wireless fading channel, and introduces a directional water-filling algorithm which provides a simple and concise interpretation of the necessary optimality conditions.
Abstract: Wireless systems comprised of rechargeable nodes have a significantly prolonged lifetime and are sustainable. A distinct characteristic of these systems is the fact that the nodes can harvest energy throughout the duration in which communication takes place. As such, transmission policies of the nodes need to adapt to these harvested energy arrivals. In this paper, we consider optimization of point-to-point data transmission with an energy harvesting transmitter which has a limited battery capacity, communicating in a wireless fading channel. We consider two objectives: maximizing the throughput by a deadline, and minimizing the transmission completion time of the communication session. We optimize these objectives by controlling the time sequence of transmit powers subject to energy storage capacity and causality constraints. We, first, study optimal offline policies. We introduce a directional water-filling algorithm which provides a simple and concise interpretation of the necessary optimality conditions. We show the optimality of an adaptive directional water-filling algorithm for the throughput maximization problem. We solve the transmission completion time minimization problem by utilizing its equivalence to its throughput maximization counterpart. Next, we consider online policies. We use stochastic dynamic programming to solve for the optimal online policy that maximizes the average number of bits delivered by a deadline under stochastic fading and energy arrival processes with causal channel state feedback. We also propose near-optimal policies with reduced complexity, and numerically study their performances along with the performances of the offline and online optimal policies under various different configurations.

950 citations


Journal ArticleDOI
TL;DR: The state of the art in molecular electronics is reviewed to motivate the study of the Terahertz Band (0.1-10.0 THz) for electromagnetic (EM) communication among nano- devices and a new propagation model is developed based on radiative transfer theory and in light of molecular absorption.
Abstract: Nanotechnologies promise new solutions for several applications in the biomedical, industrial and military fields. At the nanoscale, a nanomachine is considered as the most basic functional unit which is able to perform very simple tasks. Communication among nanomachines will allow them to accomplish more complex functions in a distributed manner. In this paper, the state of the art in molecular electronics is reviewed to motivate the study of the Terahertz Band (0.1-10.0 THz) for electromagnetic (EM) communication among nano-devices. A new propagation model for EM communications in the Terahertz Band is developed based on radiative transfer theory and in light of molecular absorption. This model accounts for the total path loss and the molecular absorption noise that a wave in the Terahertz Band suffers when propagating over very short distances. Finally, the channel capacity of the Terahertz Band is investigated by using this model for different power allocation schemes, including a scheme based on the transmission of femtosecond-long pulses. The results show that for very short transmission distances, in the order of several tens of millimeters, the Terahertz channel supports very large bit-rates, up to few terabits per second, which enables a radically different communication paradigm for nanonetworks.

889 citations


Journal ArticleDOI
TL;DR: In this paper, the authors considered the MIMO wiretap channel, where the transmitter sends some confidential information to one user which is a legitimate receiver, while the other user is an eavesdropper.
Abstract: We consider the MIMO wiretap channel, that is a MIMO broadcast channel where the transmitter sends some confidential information to one user which is a legitimate receiver, while the other user is an eavesdropper. Perfect secrecy is achieved when the transmitter and the legitimate receiver can communicate at some positive rate, while insuring that the eavesdropper gets zero bits of information. In this paper, we compute the perfect secrecy capacity of the multiple antenna MIMO broadcast channel, where the number of antennas is arbitrary for both the transmitter and the two receivers. Our technique involves a careful study of a Sato-like upper bound via the solution of a certain algebraic Riccati equation.

857 citations


Journal ArticleDOI
TL;DR: Spatial Modulation is a novel and recently proposed multiple-antenna transmission technique that can offer, with a very low system complexity, improved data rates compared to Single-Input- Single-Output (SISO) systems, and robust error performance even in correlated channel environments.
Abstract: Multiple-antenna techniques constitute a key technology for modern wireless communications, which trade-off superior error performance and higher data rates for increased system complexity and cost. Among the many transmission principles that exploit multiple-antenna at either the transmitter, the receiver, or both, Spatial Modulation (SM) is a novel and recently proposed multiple-antenna transmission technique that can offer, with a very low system complexity, improved data rates compared to Single-Input- Single-Output (SISO) systems, and robust error performance even in correlated channel environments. SM is an entirely new modulation concept that exploits the uniqueness and randomness properties of the wireless channel for communication. This is achieved by adopting a simple but effective coding mechanism that establishes a one-to-one mapping between blocks of information bits to be transmitted and the spatial positions of the transmit-antenna in the antenna-array. In this article, we summarize the latest research achievements and outline some relevant open research issues of this recently proposed transmission technique.

720 citations


Journal ArticleDOI
TL;DR: An optical fast Fourier transform scheme is demonstrated that provides the necessary computing power to encode lower-bitrate tributaries into 10.8 and 26.0 Tbit s-1 line-rate orthogonal frequency division multiplexing (OFDM) data streams and to decode them from fibre-transmitted OFDM data streams.
Abstract: Optical transmission systems with terabit per second (Tbit s-1) single-channel line rates no longer seem to be too far-fetched. New services such as cloud computing, three-dimensional high-definition television and virtual-reality applications require unprecedented optical channel bandwidths. These high-capacity optical channels, however, are fed from lower-bitrate signals. The question then is whether the lower-bitrate tributary information can viably, energy-efficiently and effortlessly be encoded to and extracted from terabit per second data streams. We demonstrate an optical fast Fourier transform scheme that provides the necessary computing power to encode lower-bitrate tributaries into 10.8 and 26.0 Tbit s-1 line-rate orthogonal frequency division multiplexing (OFDM) data streams and to decode them from fibre-transmitted OFDM data streams. Experiments show the feasibility and ease of handling terabit per second data with low energy consumption. To the best of our knowledge, this is the largest line rate ever encoded onto a single light source.

544 citations


Book ChapterDOI
01 Jan 2011
TL;DR: This chapter begins with a development of the classic fundamental results of Feinstein regarding reliable communication of block codes and the relation of operational channel capacity to Shannon capacity for discrete channels and a technique of Dobrushin is used to extend Feinstein's results for channels with no input memory or anticipation by making codes robust to small changes in the conditional distributions describing channels.
Abstract: Reliable communication over a noisy channel is the focus of this chapter. The chapter begins with a development of the classic fundamental results of Feinstein regarding reliable communication of block codes and the relation of operational channel capacity to Shannon capacity for discrete channels. A technique of Dobrushin is used to extend Feinstein’s results for channels with no input memory or anticipation by making codes robust to small changes in the conditional distributions describing channels. This leads in turn to the extension of block coding theorems to d-bar continuous channels, discrete noisy channels where the noise distribution within a block can be well approximated in a d-bar sense with only finite knowledge of past and future inputs. Traditional channel coding theorems for block codes assume knowledge of synchronization – when the blocks begin. Another technique of Doburshin is used to synchronize block codes through noisy channels. Combining synchronized block codes with the Rohlin-Kakutani theorem yields a coding theorem for sliding-block channel coding. Finally, combining the source coding theorems with channel coding theorems yields joint-source and channel coding theorems.

510 citations


Journal ArticleDOI
TL;DR: This letter generalizes the Barry's model by including wavelength-dependent white LED characteristics and spectral reflectance of indoor reflectors and shows that the VLC provides a larger transmission bandwidth than infrared communications.
Abstract: In this letter, we present indoor multipath dispersion characteristics for visible light communications (VLC). Since the VLC uses a wide spectrum between 380 nm and 780 nm, the conventional narrowband model for infrared may not apply. We generalize the Barry's model by including wavelength-dependent white LED characteristics and spectral reflectance of indoor reflectors. We perform a computer simulation to compare the power delay profile of the VLC with that of infrared communications. From our studies, we show that the VLC provides a larger transmission bandwidth than infrared communications.

Journal ArticleDOI
TL;DR: In this paper, the secrecy capacity of the wiretap channel model was shown to be bounded by the mutual information between the message and the eavesdropper's observations, where the secrecy is defined as the probability of the receiver's probability of error in recovering the message.
Abstract: Suppose that Alice wishes to send messages to Bob through a communication channel C1, but her transmissions also reach an eavesdropper Eve through another channel C2. This is the wiretap channel model introduced by Wyner in 1975. The goal is to design a coding scheme that makes it possible for Alice to communicate both reliably and securely. Reliability is measured in terms of Bob's probability of error in recovering the message, while security is measured in terms of the mutual information between the message and Eve's observations. Wyner showed that the situation is characterized by a single constant Cs, called the secrecy capacity, which has the following meaning: for all e >; 0, there exist coding schemes of rate R ≥ Cs-e that asymptotically achieve the reliability and security objectives. However, his proof of this result is based upon a random-coding argument. To date, despite consider able research effort, the only case where we know how to construct coding schemes that achieve secrecy capacity is when Eve's channel C2 is an erasure channel, or a combinatorial variation thereof. Polar codes were recently invented by Arikan; they approach the capacity of symmetric binary-input discrete memoryless channels with low encoding and decoding complexity. In this paper, we use polar codes to construct a coding scheme that achieves the secrecy capacity for a wide range of wiretap channels. Our construction works for any instantiation of the wiretap channel model, as long as both C1 and C2 are symmetric and binary-input, and C2 is degraded with respect to C1. Moreover, we show how to modify our construction in order to provide strong security, in the sense defined by Maurer, while still operating at a rate that approaches the secrecy capacity. In this case, we cannot guarantee that the reliability condition will also be satisfied unless the main channel C1 is noiseless, although we believe it can be always satisfied in practice.

Journal ArticleDOI
10 Feb 2011
TL;DR: An overview of the existing vehicular channel measurements in a variety of important environments, and the observed channel characteristics (such as delay spreads and Doppler spreads) therein, is provided.
Abstract: To make transportation safer, more efficient, and less harmful to the environment, traffic telematics services are currently being intensely investigated and developed. Such services require dependable wireless vehicle-to-infrastructure and vehicle-to-vehicle communications providing robust connectivity at moderate data rates. The development of such dependable vehicular communication systems and standards requires accurate models of the propagation channel in all relevant environments and scenarios. Key characteristics of vehicular channels are shadowing by other vehicles, high Doppler shifts, and inherent nonstationarity. All have major impact on the data packet transmission reliability and latency. This paper provides an overview of the existing vehicular channel measurements in a variety of important environments, and the observed channel characteristics (such as delay spreads and Doppler spreads) therein. We briefly discuss the available vehicular channel models and their respective merits and deficiencies. Finally, we discuss the implications for wireless system design with a strong focus on IEEE 802.11p. On the road towards a dependable vehicular network, room for improvements in coverage, reliability, scalability, and delay are highlighted, calling for evolutionary improvements in the IEEE 802.11p standard. Multiple antennas at the onboard units and roadside units are recommended to exploit spatial diversity for increased diversity and reliability. Evolutionary improvements in the physical (PHY) and medium access control (MAC) layers are required to yield dependable systems. Extensive references are provided.

Journal ArticleDOI
TL;DR: The fundamental tradeoff between energy efficiency (EE) and SE in downlink orthogonal frequency division multiple access (OFDMA) networks is addressed and a low-complexity but near-optimal resource allocation algorithm is developed for practical application of the EE-SE tradeoff.
Abstract: Conventional design of wireless networks mainly focuses on system capacity and spectral efficiency (SE). As green radio (GR) becomes an inevitable trend, energy-efficient design is becoming more and more important. In this paper, the fundamental tradeoff between energy efficiency (EE) and SE in downlink orthogonal frequency division multiple access (OFDMA) networks is addressed. We first set up a general EE-SE tradeoff framework, where the overall EE, SE and per-user quality-of-service (QoS) are all considered, and prove that under this framework, EE is strictly quasiconcave in SE. We then discuss some basic properties, such as the impact of channel power gain and circuit power on the EE-SE relation. We also find a tight upper bound and a tight lower bound on the EE-SE curve for general scenarios, which reflect the actual EE-SE relation. We then focus on a special case that priority and fairness are considered and suggest an alternative upper bound, which is proved to be achievable for flat fading channels. We also develop a low-complexity but near-optimal resource allocation algorithm for practical application of the EE-SE tradeoff. Numerical results confirm the theoretical findings and demonstrate the effectiveness of the proposed resource allocation scheme for achieving a flexible and desirable tradeoff between EE and SE.

Patent
14 Feb 2011
TL;DR: In this article, a system and method of receiving a channel state information reference signal (CSI-RS) is presented, where a first CSI-RS transmitted from a base station is received at a first periodicity using a first set of antenna ports.
Abstract: A system and method of receiving a channel state information reference signal (CSI-RS) is presented. At a user equipment, a first CSI-RS transmitted from a base station is received. In some implementations, the first CSI-RS is transmitted at a first periodicity using a first set of antenna ports. At the user equipment, a second CSI-RS transmitted from the base station is received. In some implementations, the second CSI-RS is transmitted at a second periodicity using a second set of antenna ports. At least one of the first CSI-RS and the second CSI-RS is used to perform channel measurement.

Posted Content
TL;DR: In this article, the authors proposed a conceptual framework to explain whether and when the introduction of a new retail store channel helps and hurts sales in existing direct channels, and found evidence of cross-channel cannibalization and synergy.
Abstract: In this paper, we propose a conceptual framework to explain whether and when the introduction of a new retail store channel helps and hurts sales in existing direct channels. A conceptual framework separates short- and long-run effects by analyzing the capabilities of a channel that help consumers accomplish their shopping goals. To test the theory, we analyze a unique data set from a high-end retailer using matching methods. We study the introduction of a retail store and find evidence of cross-channel cannibalization and synergy. The presence of a retail store decreases sales in the catalog, but not Internet channel, in the short term, but increases sales in both direct channels over time. Following the opening of the store, more first-time customers begin purchasing in the direct channels. These results suggest that adding a retail store to direct channels yields different results from adding an Internet channel to a retail store channel as previously studied.

Journal ArticleDOI
TL;DR: A sufficient condition for generic multi-channel power control to have a unique equilibrium in frequency-selective channels is discovered and the proposed scheme improves both energy efficiency and spectral efficiency in an interference-limited multi-cell cellular network.
Abstract: Power optimization techniques are becoming increasingly important in wireless system design since battery technology has not kept up with the demand of mobile devices. They are also critical to interference management in wireless systems because interference usually results from both aggressive spectral reuse and high power transmission and severely limits system performance. In this paper, we develop an energy-efficient power optimization scheme for interference-limited wireless communications. We consider both circuit and transmission powers and focus on energy efficiency over throughput. We first investigate a non-cooperative game for energy-efficient power optimization in frequency-selective channels and reveal the conditions of the existence and uniqueness of the equilibrium for this game. Most importantly, we discover a sufficient condition for generic multi-channel power control to have a unique equilibrium in frequency-selective channels. Then we study the tradeoff between energy efficiency and spectral efficiency and show by simulation results that the proposed scheme improves both energy efficiency and spectral efficiency in an interference-limited multi-cell cellular network.

Journal ArticleDOI
TL;DR: In this article, the authors considered the problem of distributed learning and channel access in a cognitive network with multiple secondary users, where the availability statistics of the channels are initially unknown to the secondary users and are estimated using sensing decisions.
Abstract: The problem of distributed learning and channel access is considered in a cognitive network with multiple secondary users. The availability statistics of the channels are initially unknown to the secondary users and are estimated using sensing decisions. There is no explicit information exchange or prior agreement among the secondary users and sensing and access decisions are undertaken by them in a completely distributed manner. We propose policies for distributed learning and access which achieve order-optimal cognitive system throughput (number of successful secondary transmissions) under self play, i.e., when implemented at all the secondary users. Equivalently, our policies minimize the sum regret in distributed learning and access, which is the loss in secondary throughput due to learning and distributed access. For the scenario when the number of secondary users is known to the policy, we prove that the total regret is logarithmic in the number of transmission slots. This policy achieves order-optimal regret based on a logarithmic lower bound for regret under any uniformly-good learning and access policy. We then consider the case when the number of secondary users is fixed but unknown, and is estimated at each user through feedback. We propose a policy whose sum regret grows only slightly faster than logarithmic in the number of transmission slots.

Journal ArticleDOI
TL;DR: This work proposes a new statistical model for aggregate interference of a cognitive network, which accounts for the sensing procedure, secondary spatial reuse protocol, and environment-dependent conditions such as path loss, shadowing, and channel fading, and demonstrates the effectiveness of this model in evaluating the system performance of cognitive networks.
Abstract: Opportunistic spectrum access creates the opening of under-utilized portions of the licensed spectrum for reuse, provided that the transmissions of secondary radios do not cause harmful interference to primary users. Such a system would require secondary users to be cognitive-they must accurately detect and rapidly react to varying spectrum usage. Therefore, it is important to characterize the effect of cognitive network interference due to such secondary spectrum reuse. In this paper, we propose a new statistical model for aggregate interference of a cognitive network, which accounts for the sensing procedure, secondary spatial reuse protocol, and environment-dependent conditions such as path loss, shadowing, and channel fading. We first derive the characteristic function and cumulants of the cognitive network interference at a primary user. Using the theory of truncated-stable distributions, we then develop the statistical model for the cognitive network interference. We further extend this model to include the effect of power control and demonstrate the use of our model in evaluating the system performance of cognitive networks. Numerical results show the effectiveness of our model for capturing the statistical behavior of the cognitive network interference. This work provides essential understanding of interference for successful deployment of future cognitive networks.

Journal ArticleDOI
TL;DR: In this paper, the authors developed a forward model of slope turbidite reservoirs that is internally consistent, reproducible, and quantifiable using event-based forward modeling, utilizing rules.

Journal ArticleDOI
TL;DR: A coordinated beamforming approach whereby multiple base stations jointly optimize their downlink beamforming vectors in order to simultaneously improve the data rates of a given group of cell edge users is considered.
Abstract: In a cellular wireless system, users located at cell edges often suffer significant out-of-cell interference. Assuming each base station is equipped with multiple antennas, we can model this scenario as a multiple-input single-output (MISO) interference channel. In this paper we consider a coordinated beamforming approach whereby multiple base stations jointly optimize their downlink beamforming vectors in order to simultaneously improve the data rates of a given group of cell edge users. Assuming perfect channel knowledge, we formulate this problem as the maximization of a system utility (which balances user fairness and average user rates), subject to individual power constraints at each base station. We show that, for the single-carrier case and when the number of antennas at each base station is at least two, the optimal coordinated beamforming problem is NP-hard for both the harmonic mean utility and the proportional fairness utility. For general utilities, we propose a cyclic coordinate descent algorithm, which enables each transmitter to update its beamformer locally with limited information exchange and establish its global convergence to a stationary point. We illustrate its effectiveness in computer simulations by using the space matched beamformer as the benchmark.

Journal ArticleDOI
TL;DR: It is shown that MK/M+K-1 degrees of freedom are achievable, without any knowledge of the channel coefficient values at the transmitters and with only mild assumptions on the channel coherence structure.
Abstract: We propose a blind interference alignment scheme for the vector broadcast channel where the transmitter is equipped with M antennas and there are K receivers, each equipped with a reconfigurable antenna capable of switching among M preset modes Without any knowledge of the channel coefficient values at the transmitters and with only mild assumptions on the channel coherence structure we show that MK/M+K-1 degrees of freedom are achievable The key to the blind interference alignment scheme is the ability of the receivers to switch between reconfigurable antenna modes to create short term channel fluctuation patterns that are exploited by the transmitter The achievable scheme does not require cooperation between transmit antennas and is therefore applicable to the M × K X network as well Only finite symbol extensions are used, and no channel knowledge at the receivers is required to null the interference

Posted Content
TL;DR: In this paper, the authors explore the core ideas behind linear network coding and the possibilities it offers for communication over interference-limited wireless networks, and present some simple examples of such a technique.
Abstract: When two or more users in a wireless network transmit simultaneously, their electromagnetic signals are linearly superimposed on the channel. As a result, a receiver that is interested in one of these signals sees the others as unwanted interference. This property of the wireless medium is typically viewed as a hindrance to reliable communication over a network. However, using a recently developed coding strategy, interference can in fact be harnessed for network coding. In a wired network, (linear) network coding refers to each intermediate node taking its received packets, computing a linear combination over a finite field, and forwarding the outcome towards the destinations. Then, given an appropriate set of linear combinations, a destination can solve for its desired packets. For certain topologies, this strategy can attain significantly higher throughputs over routing-based strategies. Reliable physical layer network coding takes this idea one step further: using judiciously chosen linear error-correcting codes, intermediate nodes in a wireless network can directly recover linear combinations of the packets from the observed noisy superpositions of transmitted signals. Starting with some simple examples, this survey explores the core ideas behind this new technique and the possibilities it offers for communication over interference-limited wireless networks.

Journal ArticleDOI
TL;DR: Understanding the mechanisms by which deltaic channel networks self-organize, grow, and distribute sediment and nutrients over the delta surface and coupling these to ecosystem processes, especially the interplay of topography, network geometry, and ecosystem dynamics, is understood.
Abstract: Restoration of river deltas involves diverting sediment and water from major channels into adjoining drowned areas, where the sediment can build new land and provide a platform for regenerating wetland ecosystems. Except for local engineered structures at the points of diversion, restoration mainly relies on natural delta-building processes. Present understanding of such processes is sufficient to provide a basis for determining the feasibility of restoration projects through quantitative estimates of land-building rates and sustainable wetland area under different scenarios of sediment supply, subsidence, and sea-level rise. We are not yet to the point of being able to predict the evolution of a restored delta in detail. Predictions of delta evolution are based on field studies of active deltas, deltas in mine-tailings ponds, experimental deltas, and countless natural experiments contained in the stratigraphic record. These studies provide input for a variety of mechanistic delta models, ranging from radially averaged formulations to more detailed models that can resolve channels, topography, and ecosystem processes. Especially exciting areas for future research include understanding the mechanisms by which deltaic channel networks self-organize, grow, and distribute sediment and nutrients over the delta surface and coupling these to ecosystem processes, especially the interplay of topography, network geometry, and ecosystem dynamics.

Proceedings ArticleDOI
21 Oct 2011
TL;DR: This paper demonstrates a covert channel with considerably higher bit rate than previously reported, and assesses that even at such improved rates, the harm of data exfiltration from these channels is still limited to the sharing of small, if important, secrets such as private keys.
Abstract: Recent exploration into the unique security challenges of cloud computing have shown that when virtual machines belonging to different customers share the same physical machine, new forms of cross-VM covert channel communication arise. In this paper, we explore one of these threats, L2 cache covert channels, and demonstrate the limits of these this threat by providing a quantification of the channel bit rates and an assessment of its ability to do harm. Through progressively refining models of cross-VM covert channels from the derived maximums, to implementable channels in the lab, and finally in Amazon EC2 itself we show how a variety of factors impact our ability to create effective channels. While we demonstrate a covert channel with considerably higher bit rate than previously reported, we assess that even at such improved rates, the harm of data exfiltration from these channels is still limited to the sharing of small, if important, secrets such as private keys.

Journal ArticleDOI
TL;DR: This paper focuses on the energy efficiency of a cognitive radio network, in which a secondary user senses the channels licensed to some primary users sequentially before it decides to transmit, and develops an algorithm to find the optimal sensing-access strategies for the original problem.
Abstract: Energy-efficient design has become increasingly important to battery-powered wireless devices. In this paper, we focus on the energy efficiency of a cognitive radio network, in which a secondary user senses the channels licensed to some primary users sequentially before it decides to transmit. Energy is consumed in both the channel sensing and transmission processes. The energy-efficient design calls for a careful design in the sensing-access strategies and the sensing order, with the sensing strategy specifying when to stop sensing and start transmission, the access strategy specifying the power level to be used upon transmission, and the sensing order specifying the sequence of channel sensing. Hence, the objective of this paper is to identify the sensing-access strategies and the sensing order that achieve the maximum energy efficiency. We first investigate the design when the channel sensing order is given and formulate the above design problem as a stochastic sequential decision-making problem. To solve it, we study another parametric formulation of the original problem, which rewards transmission throughput and penalizes energy consumption. Dynamic programming can be applied to identify the optimal strategy for the parametric problem. Then, by exploring the relationship between the two formulations and making use of the monotonicity property of the parametric formulation, we develop an algorithm to find the optimal sensing-access strategies for the original problem. Furthermore, we study the joint design of the channel sensing order and the sensing-access strategies. Lastly, the performance of the proposed designs is evaluated through numerical results.

Patent
23 Nov 2011
TL;DR: In this article, a method of managing carrier aggregation for a multi-radio access technology (RAT) wireless transmitter/receiver unit (WTRU) is presented, which may include: receiving, by the WRTU over a primary channel associated with a RAT of a first type, provisioning information for provisioning a supplementary channel associated between the RAT and a second type, and wirelessly exchanging the first data associated with the communication over the primary channel via the receiver.
Abstract: A method of managing carrier aggregation for a multi-radio access technology (RAT) wireless transmitter/receiver unit (WTRU) is disclosed. The method may include: receiving, by the WRTU over a primary channel associated with a RAT of a first type, provisioning information for provisioning a supplementary channel associated with a RAT of a second type; establishing the supplementary channel associated with the RAT of the second type based on the received provisioning information; and wirelessly exchanging, by the WRTU, first data associated with a communication over the primary channel via the RAT of the first type, while wireless exchanging second data associated with the communication over the supplementary channel via the RAT of the second type.

Patent
04 May 2011
TL;DR: In this article, the authors proposed a method for channel and interference condition feedback in a multi-user MIMO wireless communication system, which reduces the dimension of the beamforming matrix by selecting a sub-set of antennas or by Eigen mode selection and sending a reduced dimension candidate transmit beamform matrix or an effective channel matrix to a beamformer.
Abstract: System and method for dimension reduction and for channel and interference condition feedback in a Multi-User Multiple-Input-Multiple-Output (MU MIMO) wireless communication systems. The method for dimension reduction includes determining a number of virtual antennas,ν?K#191, for beamformees pertaining to a multi user (MU) transmission group, reducing the dimension of said matrix by selecting a sub-set of antennas or by Eigen mode selection and sending a reduced dimension candidate transmit beamforming matrix or an effective channel matrix to a beamformer. The method for channel and interference condition feedback Interference condition includes sending to a beamformee metric indicative of the interference level from other streams.

Posted Content
TL;DR: How many antennas per UT are needed to achieve η % of the ultimate performance and how much can be gained through more sophisticated minimum-mean-square-error (MMSE) detection and how many more antennas are needed with the matched filter to achieve the same performance are derived.
Abstract: We consider a multicell MIMO uplink channel where each base station (BS) is equipped with a large number of antennas N. The BSs are assumed to estimate their channels based on pilot sequences sent by the user terminals (UTs). Recent work has shown that, as N grows infinitely large, (i) the simplest form of user detection, i.e., the matched filter (MF), becomes optimal, (ii) the transmit power per UT can be made arbitrarily small, (iii) the system performance is limited by pilot contamination. The aim of this paper is to assess to which extent the above conclusions hold true for large, but finite N. In particular, we derive how many antennas per UT are needed to achieve \eta % of the ultimate performance. We then study how much can be gained through more sophisticated minimum-mean-square-error (MMSE) detection and how many more antennas are needed with the MF to achieve the same performance. Our analysis relies on novel results from random matrix theory which allow us to derive tight approximations of achievable rates with a class of linear receivers.

Proceedings ArticleDOI
10 Apr 2011
TL;DR: This work presents a new secret key generation approach that utilizes the uniformly distributed phase information of channel responses to extract shared cryptographic keys under narrowband multipath fading models and is highly scalable and can improve the analytical key bit generation rate by a couple of orders of magnitude.
Abstract: Recently, there has been great interest in physical layer security techniques that exploit the randomness of wireless channels for securely extracting cryptographic keys. Several interesting approaches have been developed and demonstrated for their feasibility. The state-of-the-art, however, still has much room for improving their practicality. This is because i) the key bit generation rate supported by most existing approaches is very low which significantly limits their practical usage given the intermittent connectivity in mobile environments; ii) existing approaches suffer from the scalability and flexibility issues, i.e., they cannot be directly extended to support efficient group key generation and do not suit for static environments. With these observations in mind, we present a new secret key generation approach that utilizes the uniformly distributed phase information of channel responses to extract shared cryptographic keys under narrowband multipath fading models. The proposed approach enjoys a high key bit generation rate due to its efficient introduction of multiple randomized phase information within a single coherence time interval as the keying sources. The proposed approach also provides scalability and flexibility because it relies only on the transmission of periodical extensions of unmodulated sinusoidal beacons, which allows effective accumulation of channel phases across multiple nodes. The proposed scheme is thoroughly evaluated through both analytical and simulation studies. Compared to existing work that focus on pairwise key generation, our approach is highly scalable and can improve the analytical key bit generation rate by a couple of orders of magnitude.