scispace - formally typeset
Search or ask a question
Topic

Communication channel

About: Communication channel is a research topic. Over the lifetime, 137411 publications have been published within this topic receiving 1715077 citations. The topic is also known as: communication channel & communications channel.


Papers
More filters
Journal ArticleDOI
TL;DR: Simulation results show that the proposed design significantly improves the secrecy communication rate for the considered setup over the case without using the IRS, and outperforms a heuristic scheme.
Abstract: An intelligent reflecting surface (IRS) can adaptively adjust the phase shifts of its reflecting units to strengthen the desired signal and/or suppress the undesired signal. In this letter, we investigate an IRS-aided secure wireless communication system where a multi-antenna access point (AP) sends confidential messages to a single-antenna user in the presence of a single-antenna eavesdropper. In particular, we consider the challenging scenario where the eavesdropping channel is stronger than the legitimate communication channel and they are also highly correlated in space. We maximize the secrecy rate of the legitimate communication link by jointly designing the AP’s transmit beamforming and the IRS’s reflect beamforming. While the resultant optimization problem is difficult to solve, we propose an efficient algorithm to obtain high-quality suboptimal solution for it by applying the alternating optimization, and semidefinite relaxation methods. Simulation results show that the proposed design significantly improves the secrecy communication rate for the considered setup over the case without using the IRS, and outperforms a heuristic scheme.

410 citations

Journal ArticleDOI
TL;DR: An achievable scheme composed of nested lattice codes for the uplink and structured binning for the downlink based on a three-stage lattice partition chain, which is a key ingredient for producing the best gap-to-capacity results to date.
Abstract: In this paper, a Gaussian two-way relay channel, where two source nodes exchange messages with each other through a relay, is considered. We assume that all nodes operate in full-duplex mode and there is no direct channel between the source nodes. We propose an achievable scheme composed of nested lattice codes for the uplink and structured binning for the downlink. Unlike conventional nested lattice codes, our codes utilize two different shaping lattices for source nodes based on a three-stage lattice partition chain, which is a key ingredient for producing the best gap-to-capacity results to date. Specifically, for all channel parameters, the achievable rate region of our scheme is within 1/2 bit from the capacity region for each user and its sum rate is within log3/2 bit from the sum capacity.

407 citations

Journal ArticleDOI
TL;DR: The requirements of the 5G channel modeling are summarized, an extensive review of the recent channel measurements and models are provided, and future research directions forChannel measurements and modeling are provided.
Abstract: The fifth generation (5G) mobile communication systems will be in use around 2020. The aim of 5G systems is to provide anywhere and anytime connectivity for anyone and anything. Several new technologies are being researched for 5G systems, such as massive multiple-input multiple-output communications, vehicle-to-vehicle communications, high-speed train communications, and millimeter wave communications. Each of these technologies introduces new propagation properties and sets specific requirements on 5G channel modeling. Considering the fact that channel models are indispensable for system design and performance evaluation, accurate and efficient channel models covering various 5G technologies and scenarios are urgently needed. This paper first summarizes the requirements of the 5G channel modeling, and then provides an extensive review of the recent channel measurements and models. Finally, future research directions for channel measurements and modeling are provided.

407 citations

Journal ArticleDOI
TL;DR: This work derives the outage probability of spatial diversity and time diversity systems that use equal gain combining (EGC), optimal combining, and select-max combining and feels diversity should be considered as one of the system techniques to improve channel performance in clear atmospheric optical channels.
Abstract: Optical communication over the clear atmosphere provides a means for high data rate communication (gigabits per second) over relatively short distances (kilometers). However, turbulence in the atmosphere leads to fades of varying depths, some of which may lead to heavy loss of data. We consider spatial diversity at both the transmitter and receiver, as well as time diversity as a means to mitigate the short-term loss of signal strength. Using direct detection receivers and binary pulse position modulation as an example, we derive the outage probability of spatial diversity and time diversity systems that use equal gain combining (EGC), optimal combining, and select-max combining. The power gain of using these diversity systems is found to be substantial, and the performance of equal gain combining is found to be almost as good as optimal combining. Hence, we feel diversity should be considered as one of the system techniques to improve channel performance in clear atmospheric optical channels.

407 citations

Journal ArticleDOI
TL;DR: This work introduces two new methods to mitigate ICI in an OFDM system with coherent channel estimation that use a piece-wise linear model to approximate channel time-variations and finds a closed-form expression for the improvement in average signal-to-interference ratio (SIR) when these mitigation methods are applied for a narrowband time-Variant channel.
Abstract: Orthogonal frequency-division multiplexing (OFDM) is robust against frequency selective fading due to the increase of the symbol duration. However, for mobile applications channel time-variations in one OFDM symbol introduce intercarrier-interference (ICI) which degrades the performance. This becomes more severe as mobile speed, carrier frequency or OFDM symbol duration increases. As delay spread increases, symbol duration should also increase in order to maintain a near-constant channel in every frequency subband. Also, due to the high demand for bandwidth, there is a trend toward higher carrier frequencies. Therefore, to have an acceptable reception quality for the applications that experience high delay and Doppler spread, there is a need for ICI mitigation within one OFDM symbol. We introduce two new methods to mitigate ICI in an OFDM system with coherent channel estimation. Both methods use a piece-wise linear model to approximate channel time-variations. The first method extracts channel time-variations information from the cyclic prefix. The second method estimates these variations using the next symbol. We find a closed-form expression for the improvement in average signal-to-interference ratio (SIR) when our mitigation methods are applied for a narrowband time-variant channel. Finally, our simulation results show how these methods would improve the performance in a highly time-variant environment with high delay spread.

406 citations


Network Information
Related Topics (5)
Wireless
133.4K papers, 1.9M citations
88% related
Network packet
159.7K papers, 2.2M citations
86% related
Wireless network
122.5K papers, 2.1M citations
84% related
Node (networking)
158.3K papers, 1.7M citations
83% related
Wireless sensor network
142K papers, 2.4M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202270
20214,425
20206,535
20197,160
20187,052
20176,315