scispace - formally typeset
Search or ask a question
Topic

Communication channel

About: Communication channel is a research topic. Over the lifetime, 137411 publications have been published within this topic receiving 1715077 citations. The topic is also known as: communication channel & communications channel.


Papers
More filters
Patent
14 Feb 2011
TL;DR: In this article, a system and method of receiving a channel state information reference signal (CSI-RS) is presented, where a first CSI-RS transmitted from a base station is received at a first periodicity using a first set of antenna ports.
Abstract: A system and method of receiving a channel state information reference signal (CSI-RS) is presented. At a user equipment, a first CSI-RS transmitted from a base station is received. In some implementations, the first CSI-RS is transmitted at a first periodicity using a first set of antenna ports. At the user equipment, a second CSI-RS transmitted from the base station is received. In some implementations, the second CSI-RS is transmitted at a second periodicity using a second set of antenna ports. At least one of the first CSI-RS and the second CSI-RS is used to perform channel measurement.

374 citations

Journal ArticleDOI
TL;DR: This paper proposes two tight SM capacity upper bounds and presents the solution of the optimal time split ratio for the maximum system throughput according to the proposed upper bound and conducts Monte-carlo simulations to reveal the throughput gain of the proposed SM-FD relaying protocol.
Abstract: We consider a dual-hop full-duplex relaying system, where the energy constrained relay node is powered by radio frequency signals from the source using the time-switching architecture, both the amplify-and-forward and decode-and-forward relaying protocols are studied. Specifically, we provide an analytical characterization of the achievable throughput of three different communication modes, namely, instantaneous transmission, delay-constrained transmission, and delay tolerant transmission. In addition, the optimal time split is studied for different transmission modes. Our results reveal that, when the time split is optimized, the full-duplex relaying could substantially boost the system throughput compared to the conventional half-duplex relaying architecture for all three transmission modes. In addition, it is shown that the instantaneous transmission mode attains the highest throughput. However, compared to the delay-constrained transmission mode, the throughput gap is rather small. Unlike the instantaneous time split optimization which requires instantaneous channel state information, the optimal time split in the delay-constrained transmission mode depends only on the statistics of the channel, hence, is suitable for practical implementations.

374 citations

Journal ArticleDOI
TL;DR: The estimation error shows that the presented algorithm is comparable to the minimum mean square error (MMSE) with full knowledge of the channel statistics, and it is better than an approximation to linear MMSE.
Abstract: In this letter, we present a deep learning algorithm for channel estimation in communication systems. We consider the time–frequency response of a fast fading communication channel as a 2D image. The aim is to find the unknown values of the channel response using some known values at the pilot locations. To this end, a general pipeline using deep image processing techniques, image super-resolution (SR), and image restoration (IR) is proposed. This scheme considers the pilot values, altogether, as a low-resolution image and uses an SR network cascaded with a denoising IR network to estimate the channel. Moreover, the implementation of the proposed pipeline is presented. The estimation error shows that the presented algorithm is comparable to the minimum mean square error (MMSE) with full knowledge of the channel statistics, and it is better than an approximation to linear MMSE. The results confirm that this pipeline can be used efficiently in channel estimation.

373 citations

Journal ArticleDOI
TL;DR: This paper develops a sparse formulation and compressed sensing-based solutions for the wideband mmWave channel estimation problem for hybrid architectures and proposes explicit channel estimation techniques for purely time or frequency domains and for combined time/frequency domains.
Abstract: Hybrid analog and digital precoding allows millimeter wave (mmWave) systems to achieve both array and multiplexing gain. The design of the hybrid precoders and combiners, though, is usually based on the knowledge of the channel. Prior work on mmWave channel estimation with hybrid architectures focused on narrowband channels. Since mmWave systems will be wideband with frequency selectivity, it is vital to develop channel estimation solutions for hybrid architectures-based wideband mmWave systems. In this paper, we develop a sparse formulation and compressed sensing-based solutions for the wideband mmWave channel estimation problem for hybrid architectures. First, we leverage the sparse structure of the frequency-selective mmWave channels and formulate the channel estimation problem as a sparse recovery in both time and frequency domains. Then, we propose explicit channel estimation techniques for purely time or frequency domains and for combined time/frequency domains. Our solutions are suitable for both single carrier-frequency domain equalization and orthogonal frequency-division multiplexing systems. Simulation results show that the proposed solutions achieve good channel estimation quality, while requiring small training overhead. Leveraging the hybrid architecture at the transceivers gives further improvement in estimation error performance and achievable rates.

372 citations

Journal ArticleDOI
TL;DR: This paper describes some examples of the stochastic models found useful in the design and analysis of advanced computer and communication systems and discusses concurrency control procedures for databases, dynamic channel assignment for cellular radio, and random access schemes for the control of a broadcast channel.
Abstract: (Read before the Royal Statistical Society at a meeting organized by the Research Section on Wednesday, May 8th, 1985, Professor J. B. Copas in the Chair) SUMMARY This paper describes some examples of the stochastic models found useful in the design and analysis of advanced computer and communication systems. Our major theme might be termed the control of contention. As illustrations of this theme we discuss concurrency control procedures for databases, dynamic channel assignment for cellular radio, and random access schemes for the control of a broadcast channel. We emphasize asymptotic properties of product-form distributions and we present some new results on the stability of acknowledgement based random access schemes. This paper is intended to describe to the Society some examples of the stochastic models found useful in the design and analysis of advanced computer and communication systems. The examples chosen are broadly concerned with what might be termed the control of contention, and an attempt has been made to provide enough of the technical background to motivate the models considered. In Section 2 we describe a probabilistic model, due to Mitra (1985), for conflicts anlong tran- sactions in a database. Such conflicts can arise in distributed computer systems, where to ensure the consistency of a database it is often necessary to forbid the concurrent execution of transactions involving common items: a transaction must then contend with other transactions for access to the items it requires. Mitra (1985) has shown that his model can be used to answer some important design questions concerning concurrency control procedures which use exclusive and non-exclusive locks. Mitra's results are based upon a product-form solution; we indicate how his asymptotic formulae can be extended beyond the range of light traffic and the assumption of an unstructured database. In Section 3 we discuss one of the many interesting problems which arise in connection with cellular radio. Cellular radio makes efficient use of a limited number of radio channels by allowing the repeated reuse of each channel in sufficiently separated spatial regions. The topic we consider is contention between different regions for the use of dynamically assigned channels. Everitt and Macfadyen (1983) have described an analytically tractable method of dynamic channel assign- ment, which they term the maximum packing strategy. Again a product form solution is involved: from this it is easy to obtain asymptotic formulae applicable in light traffic. These formulae establish the advantage of the strategy over a fixed channel assignment for low enough loss pro- babilities, but the advantage disappears as traffic and the number of channels increase. The real potential of dynamic schemes is their ability to cope automatically with traffic intensities which fluctuate in space and time.

372 citations


Network Information
Related Topics (5)
Wireless
133.4K papers, 1.9M citations
88% related
Network packet
159.7K papers, 2.2M citations
86% related
Wireless network
122.5K papers, 2.1M citations
84% related
Node (networking)
158.3K papers, 1.7M citations
83% related
Wireless sensor network
142K papers, 2.4M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202270
20214,425
20206,535
20197,160
20187,052
20176,315