scispace - formally typeset
Search or ask a question
Topic

Communication channel

About: Communication channel is a research topic. Over the lifetime, 137411 publications have been published within this topic receiving 1715077 citations. The topic is also known as: communication channel & communications channel.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that this optimal design of the zero-memory quantization of memoryless sources could result in substantial performance improvements, more noticeable at high bit rates and for broad-tailed densities.
Abstract: We present an analysis of the zero-memory quantization of memoryless sources when the quantizer output is to be encoded and transmitted across a noisy channel. Necessary conditions for the joint optimization of the quantizer and the encoder/decoder pair are presented, and an iterative algorithm for obtaining a locally optimum system is developed. The performance of this locally optimal system, obtained for the class of generalized Gaussian distributions and the binary symmetric channel, is compared against the optimum performance theoretically attainable (using rate-distortion theoretic arguments), as well as against the performance of Lloyd-Max quantizers encoded using the natural binary code and the folded binary code. It is shown that this optimal design could result in substantial performance improvements. The performance improvements are more noticeable at high bit rates and for broad-tailed densities.

359 citations

Journal ArticleDOI
TL;DR: By characterizing the effects of fading channel variation on the adaptive signaling paradigm, adaptive trellis-coded modulation schemes are designed that can provide a significant increase in bandwidth efficiency over their nonadaptive counterparts on time-varying channels.
Abstract: The idea of using knowledge of the current channel fading values to optimize the transmitted signal in wireless communication systems has attracted substantial research attention. However, the practicality of this adaptive signaling has been questioned due to the variation of the wireless channel over time, which results in a different channel at the time of data transmission than at the time of channel estimation. By characterizing the effects of fading channel variation on the adaptive signaling paradigm, it is demonstrated here that these misgivings are well founded, as the channel variation greatly alters the nature of the problem. The main goal of this paper is to employ this characterization of the effects of the channel variation to design adaptive signaling schemes that are effective for the time-varying channel. The design of uncoded adaptive quadrature amplitude modulation (QAM) systems is considered first, and it demonstrates the need to consider the channel variation in system design. This is followed by the main contribution of this paper; using only a single outdated fading estimate when neither the Doppler frequency nor the exact shape of the autocorrelation function of the channel fading process is known, adaptive trellis-coded modulation schemes are designed that can provide a significant increase in bandwidth efficiency over their nonadaptive counterparts on time-varying channels.

359 citations

Journal ArticleDOI
TL;DR: In this paper, a practical transmission protocol to execute channel estimation and reflection optimization successively for an IRS-enhanced orthogonal frequency division multiplexing (OFDM) system is proposed, where a novel reflection pattern at the IRS is designed to aid the channel estimation at the access point (AP) based on the received pilot signals from the user, for which the estimated CSI is derived in closed-form.
Abstract: In the intelligent reflecting surface (IRS)-enhanced wireless communication system, channel state information (CSI) is of paramount importance for achieving the passive beamforming gain of IRS, which, however, is a practically challenging task due to its massive number of passive elements without transmitting/receiving capabilities. In this letter, we propose a practical transmission protocol to execute channel estimation and reflection optimization successively for an IRS-enhanced orthogonal frequency division multiplexing (OFDM) system. Under the unit-modulus constraint, a novel reflection pattern at the IRS is designed to aid the channel estimation at the access point (AP) based on the received pilot signals from the user, for which the channel estimation error is derived in closed-form. With the estimated CSI, the reflection coefficients are then optimized by a low-complexity algorithm based on the resolved strongest signal path in the time domain. Simulation results corroborate the effectiveness of the proposed channel estimation and reflection optimization methods.

358 citations

Journal ArticleDOI
TL;DR: A coding scheme based on the principle of channel resolvability is developed, which proves that if the receiver's channel is better than the warden's channel, it is possible to communicate on the order of √n reliable and covert bits over n channel uses without a secret key.
Abstract: We consider the situation in which a transmitter attempts to communicate reliably over a discrete memoryless channel, while simultaneously ensuring covertness (low probability of detection) with respect to a warden, who observes the signals through another discrete memoryless channel. We develop a coding scheme based on the principle of channel resolvability, which generalizes and extends prior work in several directions. First, it shows that irrespective of the quality of the channels, it is possible to communicate on the order of $\sqrt {n}$ reliable and covert bits over $n$ channel uses if the transmitter and the receiver share on the order of $\sqrt {n}$ key bits. This improves upon earlier results requiring on the order of $\sqrt {n}\log n$ key bits. Second, it proves that if the receiver’s channel is better than the warden’s channel in a sense that we make precise, it is possible to communicate on the order of $\sqrt {n}$ reliable and covert bits over $n$ channel uses without a secret key. This generalizes earlier results established for binary symmetric channels. We also identify the fundamental limits of covert and secret communications in terms of the optimal asymptotic scaling of the message size and key size, and we extend the analysis to Gaussian channels. The main technical problem that we address is how to develop concentration inequalities for low-weight sequences. The crux of our approach is to define suitably modified typical sets that are amenable to concentration inequalities.

357 citations

Journal ArticleDOI
Lawrence Howard Ozarow1
TL;DR: In this paper a deterministic feedback code is presented for the two-user Gaussian multiple access channel, which is shown to allow reliable communication at all points inside a region larger than any previously obtained.
Abstract: Since the appearance of [10] by Gaarder and Wolf, it has been well known that feedback can enlarge the capacity region of the multiple access channel. In this paper a deterministic feedback code is presented for the two-user Gaussian multiple access channel, which is shown to allow reliable communication at all points inside a region larger than any previously obtained. An outer bound is given which is shown to coincide with the achievable region, thus yielding the capacity region of this channel exactly.

357 citations


Network Information
Related Topics (5)
Wireless
133.4K papers, 1.9M citations
88% related
Network packet
159.7K papers, 2.2M citations
86% related
Wireless network
122.5K papers, 2.1M citations
84% related
Node (networking)
158.3K papers, 1.7M citations
83% related
Wireless sensor network
142K papers, 2.4M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202270
20214,425
20206,535
20197,160
20187,052
20176,315