scispace - formally typeset
Search or ask a question
Topic

Communication complexity

About: Communication complexity is a research topic. Over the lifetime, 3870 publications have been published within this topic receiving 105832 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: These results refer to scalar linear, vector linear, and nonlinear encoding functions and are the first results that address the computational complexity of achieving the network coding capacity in both the vector linear and general network coding scenarios.
Abstract: This work addresses the computational complexity of achieving the capacity of a general network coding instance. It has been shown [Lehman and Lehman, SODA 2005] that determining the “scalar linear” capacity of a general network coding instance is NP-hard. In this paper we address the notion of approximation in the context of both linear and nonlinear network coding. Loosely speaking, we show that given an instance of the general network coding problem of capacity C , constructing a code of rate αC for any universal (i.e., independent of the size of the instance) constant α ≤ 1 is “hard”. Specifically, finding such network codes would solve a long standing open problem in the field of graph coloring. Our results refer to scalar linear, vector linear, and nonlinear encoding functions and are the first results that address the computational complexity of achieving the network coding capacity in both the vector linear and general network coding scenarios. In addition, we consider the problem of determining the (scalar) linear capacity of a planar network coding instance (i.e., an instance in which the underlying graph is planar). We show that even for planar networks this problem remains NP-hard.

71 citations

Journal ArticleDOI
TL;DR: Two methods for proving lower bounds on the size of small-depth circuits are investigated, namely the approaches based on multiparty communication games and algebraic characterizations extending the concepts of the tensor rank and rigidity of matrices.
Abstract: We investigate two methods for proving lower bounds on the size of small-depth circuits, namely the approaches based on multiparty communication games and algebraic characterizations extending the concepts of the tensor rank and rigidity of matrices. Our methods are combinatorial, but we think that our main contribution concerns the algebraic concepts used in this area (tensor ranks and rigidity). Our main results are following. (i) An $o(n)$-bit protocol for a communication game for computing shifts, which also gives an upper bound of $o(n^2)$ on the contact rank of the tensor of multiplication of polynomials; this disproves some earlier conjectures. A related probabilistic construction gives an $o(n)$ upper bound for computing all permutations and an $O(n\log\log n)$ upper bound on the communication complexity of pointer jumping with permutations. (ii) A lower bound on certain restricted circuits of depth 2 which are related to the problem of proving a superlinear lower bound on the size of logarithmic-depth circuits; this bound has interpretations both as a lower bound on the rigidity of the tensor of multiplication of polynomials and as a lower bound on the communication needed to compute the shift function in a restricted model. (iii) An upper bound on Boolean circuits of depth 2 for computing shifts and, more generally, all permutations; this shows that such circuits are more efficient than the model based on sending bits along vertex-disjoint paths.

70 citations

Posted Content
TL;DR: In this article, the partition bounds for randomized communication complexity and query complexity were introduced. But the partition bound is stronger than both the rectangle/corruption bound and the \gamma_2/generalized discrepancy bound.
Abstract: We describe new lower bounds for randomized communication complexity and query complexity which we call the partition bounds. They are expressed as the optimum value of linear programs. For communication complexity we show that the partition bound is stronger than both the rectangle/corruption bound and the \gamma_2/generalized discrepancy bounds. In the model of query complexity we show that the partition bound is stronger than the approximate polynomial degree and classical adversary bounds. We also exhibit an example where the partition bound is quadratically larger than polynomial degree and classical adversary bounds.

70 citations

Book ChapterDOI
01 Oct 2003
TL;DR: A new distributed data replication algorithm tailored especially for large-scale read/write data objects such as files that guarantees atomic data consistency, while incurring low latency costs.
Abstract: We present a new distributed data replication algorithm tailored especially for large-scale read/write data objects such as files. The algorithm guarantees atomic data consistency, while incurring low latency costs. The key idea of the algorithm is to maintain copies of the data objects separately from information about the locations of up-to-date copies. Because it performs most of its work using only the location information, our algorithm needs to access only a few copies of the actual data; specifically, only one copy during a read and only f+1 copies during a write, where f is an assumed upper bound on the number of copies that can fail. These bounds are optimal. The algorithm works in an asynchronous message-passing environment. It does not use additional mechanisms such as group communication or distributed locking. It is suitable for implementation in WANs as well as LANs. We also present two lower bounds on the costs of data replication. The first lower bound is on the number of low-level writes required during a read operation on the data. The second bound is on the minimum space complexity of a class of efficient replication algorithms. These lower bounds suggest that some of the techniques used in our algorithm are necessary. They are also of independent interest.

70 citations

Book
20 Feb 2020
TL;DR: Communication complexity is the mathematical study of scenarios where several parties need to communicate to achieve a common goal as mentioned in this paper, a situation that naturally appears during computation, and it is defined as the study of situations where multiple parties must communicate in order to achieve the same goal.
Abstract: Communication complexity is the mathematical study of scenarios where several parties need to communicate to achieve a common goal, a situation that naturally appears during computation. This introduction presents the most recent developments in an accessible form, providing the language to unify several disjoint research subareas. Written as a guide for a graduate course on communication complexity, it will interest a broad audience in computer science, from advanced undergraduates to researchers in areas ranging from theory to algorithm design to distributed computing. The first part presents basic theory in a clear and illustrative way, offering beginners an entry into the field. The second part describes applications including circuit complexity, proof complexity, streaming algorithms, extension complexity of polytopes, and distributed computing. Proofs throughout the text use ideas from a wide range of mathematics, including geometry, algebra, and probability. Each chapter contains numerous examples, figures, and exercises to aid understanding.

70 citations


Network Information
Related Topics (5)
Upper and lower bounds
56.9K papers, 1.1M citations
84% related
Encryption
98.3K papers, 1.4M citations
82% related
Network packet
159.7K papers, 2.2M citations
81% related
Server
79.5K papers, 1.4M citations
81% related
Wireless network
122.5K papers, 2.1M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202319
202256
2021161
2020165
2019149
2018141