scispace - formally typeset


About: Compiler is a(n) research topic. Over the lifetime, 26362 publication(s) have been published within this topic receiving 578585 citation(s). The topic is also known as: code compiler & Compiler. more

More filters

01 Jan 1986-
TL;DR: This book discusses the design of a Code Generator, the role of the Lexical Analyzer, and other topics related to code generation and optimization. more

Abstract: 1 Introduction 1.1 Language Processors 1.2 The Structure of a Compiler 1.3 The Evolution of Programming Languages 1.4 The Science of Building a Compiler 1.5 Applications of Compiler Technology 1.6 Programming Language Basics 1.7 Summary of Chapter 1 1.8 References for Chapter 1 2 A Simple Syntax-Directed Translator 2.1 Introduction 2.2 Syntax Definition 2.3 Syntax-Directed Translation 2.4 Parsing 2.5 A Translator for Simple Expressions 2.6 Lexical Analysis 2.7 Symbol Tables 2.8 Intermediate Code Generation 2.9 Summary of Chapter 2 3 Lexical Analysis 3.1 The Role of the Lexical Analyzer 3.2 Input Buffering 3.3 Specification of Tokens 3.4 Recognition of Tokens 3.5 The Lexical-Analyzer Generator Lex 3.6 Finite Automata 3.7 From Regular Expressions to Automata 3.8 Design of a Lexical-Analyzer Generator 3.9 Optimization of DFA-Based Pattern Matchers 3.10 Summary of Chapter 3 3.11 References for Chapter 3 4 Syntax Analysis 4.1 Introduction 4.2 Context-Free Grammars 4.3 Writing a Grammar 4.4 Top-Down Parsing 4.5 Bottom-Up Parsing 4.6 Introduction to LR Parsing: Simple LR 4.7 More Powerful LR Parsers 4.8 Using Ambiguous Grammars 4.9 Parser Generators 4.10 Summary of Chapter 4 4.11 References for Chapter 4 5 Syntax-Directed Translation 5.1 Syntax-Directed Definitions 5.2 Evaluation Orders for SDD's 5.3 Applications of Syntax-Directed Translation 5.4 Syntax-Directed Translation Schemes 5.5 Implementing L-Attributed SDD's 5.6 Summary of Chapter 5 5.7 References for Chapter 5 6 Intermediate-Code Generation 6.1 Variants of Syntax Trees 6.2 Three-Address Code 6.3 Types and Declarations 6.4 Translation of Expressions 6.5 Type Checking 6.6 Control Flow 6.7 Backpatching 6.8 Switch-Statements 6.9 Intermediate Code for Procedures 6.10 Summary of Chapter 6 6.11 References for Chapter 6 7 Run-Time Environments 7.1 Storage Organization 7.2 Stack Allocation of Space 7.3 Access to Nonlocal Data on the Stack 7.4 Heap Management 7.5 Introduction to Garbage Collection 7.6 Introduction to Trace-Based Collection 7.7 Short-Pause Garbage Collection 7.8 Advanced Topics in Garbage Collection 7.9 Summary of Chapter 7 7.10 References for Chapter 7 8 Code Generation 8.1 Issues in the Design of a Code Generator 8.2 The Target Language 8.3 Addresses in the Target Code 8.4 Basic Blocks and Flow Graphs 8.5 Optimization of Basic Blocks 8.6 A Simple Code Generator 8.7 Peephole Optimization 8.8 Register Allocation and Assignment 8.9 Instruction Selection by Tree Rewriting 8.10 Optimal Code Generation for Expressions 8.11 Dynamic Programming Code-Generation 8.12 Summary of Chapter 8 8.13 References for Chapter 8 9 Machine-Independent Optimizations 9.1 The Principal Sources of Optimization 9.2 Introduction to Data-Flow Analysis 9.3 Foundations of Data-Flow Analysis 9.4 Constant Propagation 9.5 Partial-Redundancy Elimination 9.6 Loops in Flow Graphs 9.7 Region-Based Analysis 9.8 Symbolic Analysis 9.9 Summary of Chapter 9 9.10 References for Chapter 9 10 Instruction-Level Parallelism 10.1 Processor Architectures 10.2 Code-Scheduling Constraints 10.3 Basic-Block Scheduling 10.4 Global Code Scheduling 10.5 Software Pipelining 10.6 Summary of Chapter 10 10.7 References for Chapter 10 11 Optimizing for Parallelism and Locality 11.1 Basic Concepts 11.2 Matrix Multiply: An In-Depth Example 11.3 Iteration Spaces 11.4 Affine Array Indexes 11.5 Data Reuse 11.6 Array Data-Dependence Analysis 11.7 Finding Synchronization-Free Parallelism 11.8 Synchronization Between Parallel Loops 11.9 Pipelining 11.10 Locality Optimizations 11.11 Other Uses of Affine Transforms 11.12 Summary of Chapter 11 11.13 References for Chapter 11 12 Interprocedural Analysis 12.1 Basic Concepts 12.2 Why Interprocedural Analysis? 12.3 A Logical Representation of Data Flow 12.4 A Simple Pointer-Analysis Algorithm 12.5 Context-Insensitive Interprocedural Analysis 12.6 Context-Sensitive Pointer Analysis 12.7 Datalog Implementation by BDD's 12.8 Summary of Chapter 12 12.9 References for Chapter 12 A A Complete Front End A.1 The Source Language A.2 Main A.3 Lexical Analyzer A.4 Symbol Tables and Types A.5 Intermediate Code for Expressions A.6 Jumping Code for Boolean Expressions A.7 Intermediate Code for Statements A.8 Parser A.9 Creating the Front End B Finding Linearly Independent Solutions Index more

8,374 citations

01 Jan 1990-
TL;DR: This book discusses Object Modeling as a Design Technique, Object Diagram Compiler, and the Future of Object-Oriented Technology. more

Abstract: 1. Introduction. I. MODELING CONCEPTS. 2. Modeling as a Design Technique. 3. Object Modeling. 4. Advanced Object Modeling. 5. Dynamic Modeling. 6. Functional Modeling. II. DESIGN METHODOLOGY. 7. Methodology Preview. 8. Analysis. 9. System Design. 10. Object Design. 11. Methodology Summary. 12. Comparison of Methodologies. III. IMPLEMENTATION. 13. From Design to Implementation. 14. Programming Style. 15. Object-Oriented Languages. 16. Non-Object-Oriented Languages. 17. Databases. 18. Object Diagram Compiler. 19. Computer Animation. 20. Electrical Distribution Design System. 21. Future of Object-Oriented Technology. Appendix A: OMT Graphical Notation. Appendix B: Glossary. Index. more

5,396 citations

Journal ArticleDOI
Matteo Frigo1, Steven G. Johnson2Institutions (2)
24 Jan 2005-
TL;DR: It is shown that such an approach can yield an implementation of the discrete Fourier transform that is competitive with hand-optimized libraries, and the software structure that makes the current FFTW3 version flexible and adaptive is described. more

Abstract: FFTW is an implementation of the discrete Fourier transform (DFT) that adapts to the hardware in order to maximize performance. This paper shows that such an approach can yield an implementation that is competitive with hand-optimized libraries, and describes the software structure that makes our current FFTW3 version flexible and adaptive. We further discuss a new algorithm for real-data DFTs of prime size, a new way of implementing DFTs by means of machine-specific single-instruction, multiple-data (SIMD) instructions, and how a special-purpose compiler can derive optimized implementations of the discrete cosine and sine transforms automatically from a DFT algorithm. more

4,792 citations

Proceedings ArticleDOI
Chris Lattner1, Vikram Adve1Institutions (1)
20 Mar 2004-
TL;DR: The design of the LLVM representation and compiler framework is evaluated in three ways: the size and effectiveness of the representation, including the type information it provides; compiler performance for several interprocedural problems; and illustrative examples of the benefits LLVM provides for several challenging compiler problems. more

Abstract: We describe LLVM (low level virtual machine), a compiler framework designed to support transparent, lifelong program analysis and transformation for arbitrary programs, by providing high-level information to compiler transformations at compile-time, link-time, run-time, and in idle time between runs. LLVM defines a common, low-level code representation in static single assignment (SSA) form, with several novel features: a simple, language-independent type-system that exposes the primitives commonly used to implement high-level language features; an instruction for typed address arithmetic; and a simple mechanism that can be used to implement the exception handling features of high-level languages (and setjmp/longjmp in C) uniformly and efficiently. The LLVM compiler framework and code representation together provide a combination of key capabilities that are important for practical, lifelong analysis and transformation of programs. To our knowledge, no existing compilation approach provides all these capabilities. We describe the design of the LLVM representation and compiler framework, and evaluate the design in three ways: (a) the size and effectiveness of the representation, including the type information it provides; (b) compiler performance for several interprocedural problems; and (c) illustrative examples of the benefits LLVM provides for several challenging compiler problems. more

4,355 citations

Journal ArticleDOI
01 Jan 1998-
TL;DR: At its most elemental level, OpenMP is a set of compiler directives and callable runtime library routines that extend Fortran (and separately, C and C++ to express shared memory parallelism) and leaves the base language unspecified. more

Abstract: At its most elemental level, OpenMP is a set of compiler directives and callable runtime library routines that extend Fortran (and separately, C and C++ to express shared memory parallelism. It leaves the base language unspecified, and vendors can implement OpenMP in any Fortran compiler. Naturally, to support pointers and allocatables, Fortran 90 and Fortran 95 require the OpenMP implementation to include additional semantics over Fortran 77. OpenMP leverages many of the X3H5 concepts while extending them to support coarse grain parallelism. The standard also includes a callable runtime library with accompanying environment variables. more

2,973 citations

Network Information
Related Topics (5)
Optimizing compiler

3.7K papers, 108.6K citations

93% related

13K papers, 347.1K citations

91% related
Code generation

12.9K papers, 206.3K citations

91% related
High-level language computer architecture

5 papers, 14 citations

91% related

5.8K papers, 125.6K citations

91% related
No. of papers in the topic in previous years

Top Attributes

Show by:

Topic's top 5 most impactful authors

Mahmut Kandemir

114 papers, 1.9K citations

Saman Amarasinghe

99 papers, 10.5K citations

Wen-mei W. Hwu

74 papers, 4.5K citations

David Padua

71 papers, 3.2K citations

Barbara Chapman

46 papers, 580 citations