scispace - formally typeset
Search or ask a question

Showing papers on "Complementary DNA published in 2012"


Journal ArticleDOI
30 May 2012-PLOS ONE
TL;DR: The present study applied both metagenomic and metatranscriptomic approaches to characterize microbial structure and gene expression of an activated sludge community from a municipal wastewater treatment plant in Hong Kong, indicating strong nitrification activity.
Abstract: The present study applied both metagenomic and metatranscriptomic approaches to characterize microbial structure and gene expression of an activated sludge community from a municipal wastewater treatment plant in Hong Kong. DNA and cDNA were sequenced by Illumina Hi-seq2000 at a depth of 2.4 Gbp. Taxonomic analysis by MG-RAST showed bacteria were dominant in both DNA and cDNA datasets. The taxonomic profile obtained by BLAST against SILVA SSUref database and annotation by MEGAN showed that activated sludge was dominated by Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Verrucomicrobia phyla in both DNA and cDNA datasets. Global gene expression annotation based on KEGG metabolism pathway displayed slight disagreement between the DNA and cDNA datasets. Further gene expression annotation focusing on nitrogen removal revealed that denitrification-related genes sequences dominated in both DNA and cDNA datasets, while nitrifying genes were also expressed in relative high levels. Specially, ammonia monooxygenase and hydroxylamine oxidase demonstrated the high cDNA/DNA ratios in the present study, indicating strong nitrification activity. Enzyme subunits gene sequences annotation discovered that subunits of ammonia monooxygenase (amoA, amoB, amoC) and hydroxylamine oxygenase had higher expression levels compared with subunits of the other enzymes genes. Taxonomic profiles of selected enzymes (ammonia monooxygenase and hydroxylamine oxygenase) showed that ammonia-oxidizing bacteria present mainly belonged to Nitrosomonas and Nitrosospira species and no ammonia-oxidizing Archaea sequences were detected in both DNA and cDNA datasets.

277 citations


Journal ArticleDOI
TL;DR: This work presents a detailed protocol for quantitative gene expression analysis in single cells, by the sequencing of mRNA 5′ ends, more suitable for large-scale quantitative analysis, as well as for the characterization of transcription start sites, but it is unsuitable for the detection of alternatively spliced transcripts.
Abstract: Single-cell analysis of gene expression is increasingly important for the analysis of complex tissues, including cancer, developing organs and adult stem cell niches. Here we present a detailed protocol for quantitative gene expression analysis in single cells, by the sequencing of mRNA 5' ends. In all, 96 cells are lysed, and their mRNA is converted to cDNA. By using a template-switching mechanism, a bar code and an upstream primer-binding sequence are introduced simultaneously with reverse transcription. All cDNA is pooled and then prepared for 5' end sequencing, including fragmentation, adapter ligation and PCR amplification. The chief advantage of this approach is the great reduction in cost and time, afforded by the early bar-coding strategy. Compared with previous methods, it is more suitable for large-scale quantitative analysis, as well as for the characterization of transcription start sites, but it is unsuitable for the detection of alternatively spliced transcripts. Sample preparation takes 3 d, and two sets of 96 cells can be prepared in parallel. Finally, the sequencing and data analysis can take an additional 4 d altogether.

276 citations


Journal ArticleDOI
TL;DR: The S17 sequence did not affect transfection of human hepatoma cells when inserted into the hypervariable region of a genotype 1 strain, but this chimeric genome acquired a dramatic ability to replicate in hamster cells.
Abstract: An infectious cDNA clone of a genotype 3 strain of hepatitis E virus adapted to growth in HepG2/C3A human hepatoma cells was constructed. This virus was unusual in that the hypervariable region of the adapted virus contained a 171-nucleotide insertion that encoded 58 amino acids of human S17 ribosomal protein. Analyses of virus from six serial passages indicated that genomes with this insert, although initially rare, were selected during the first passage, suggesting it conferred a significant growth advantage. RNA transcripts from this cDNA and the viruses encoded by them were infectious for cells of both human and swine origin, the major host species for this zoonotic virus. Mutagenesis studies demonstrated that the S17 insert was a major factor in cell culture adaptation. Introduction of 54 synonymous mutations into the insert had no detectable effect, thus implicating protein, rather than RNA, as the important component. Truncation of the insert by 50% decreased the levels of successful transfection by ~3-fold. Substitution of the S17 sequence by a different ribosomal protein sequence or by GTPase-activating protein sequence resulted in a partial enhancement of transfection levels, whereas substitution with 58 amino acids of green fluorescent protein had no effect. Therefore, both the sequence length and the amino acid composition of the insert were important. The S17 sequence did not affect transfection of human hepatoma cells when inserted into the hypervariable region of a genotype 1 strain, but this chimeric genome acquired a dramatic ability to replicate in hamster cells.

225 citations


Journal ArticleDOI
Lianyu Yuan1, Songguang Yang1, Baoxiu Liu1, Mei Zhang1, Keqiang Wu1 
TL;DR: Results show that OsMTP1 is a bivalent cation transporter localized in the cell membrane, which is necessary for efficient translocation of Zn, Cd and other heavy metals, and maintain ion homeostasis in plant.
Abstract: Rice (Oryza sativa L. ‘Nipponbare’) cDNA subtractive suppression hybridization (SSH) libraries constructed using cadmium (Cd)-treated seedling roots were screened to isolate Cd-responsive genes. A cDNA clone, encoding the rice homolog of Metal Tolerance Protein (OsMTP1), was induced by Cd treatment. Plant MTPs belong to cation diffusion facilitator (CDF) protein family, which are widespread in bacteria, fungi, plants, and animals. OsMTP1 heterologous expression in yeast mutants showed that OsMTP1 was able to complement the mutant strains’ hypersensitivity to Ni, Cd, and Zn, but not other metals including Co and Mn. OsMTP1 expression increased tolerance to Zn, Cd, and Ni in wild-type yeast BY4741 during the exponential growth phase. OsMTP1 fused to green fluorescent protein was localized in onion epidermal cell plasma membranes, consistent with an OsMTP1 function in heavy metal transporting. OsMTP1 dsRNAi mediated by transgenic assay in rice seedlings resulted in heavy metal sensitivity and changed the heavy metal accumulation in different organs of mature rice under low-concentration heavy metal stress. Taken together, our results show that OsMTP1 is a bivalent cation transporter localized in the cell membrane, which is necessary for efficient translocation of Zn, Cd and other heavy metals, and maintain ion homeostasis in plant.

131 citations


Journal ArticleDOI
05 Dec 2012-Virology
TL;DR: Together with sequence-optimized helper expression plasmids, BAC-RSV is a stable, versatile, and efficient reverse genetics platform for generation of a recombinant Pneumovirus.

126 citations


Journal ArticleDOI
TL;DR: The data suggest that the molecular changes in the ZmYuc1 gene encoding the YUC1 protein are the causal basis of impairment in a critical step in IAA biosynthesis, essential for normal endosperm development in maize.
Abstract: The phytohormone auxin (indole-3-acetic acid [IAA]) plays a fundamental role in vegetative and reproductive plant development. Here, we characterized a seed-specific viable maize (Zea mays) mutant, defective endosperm18 (de18) that is impaired in IAA biosynthesis. de18 endosperm showed large reductions of free IAA levels and is known to have approximately 40% less dry mass, compared with De18. Cellular analyses showed lower total cell number, smaller cell volume, and reduced level of endoreduplication in the mutant endosperm. Gene expression analyses of seed-specific tryptophan-dependent IAA pathway genes, maize Yucca1 (ZmYuc1), and two tryptophan-aminotransferase co-orthologs were performed to understand the molecular basis of the IAA deficiency in the mutant. Temporally, all three genes showed high expression coincident with high IAA levels; however, only ZmYuc1 correlated with the reduced IAA levels in the mutant throughout endosperm development. Furthermore, sequence analyses of ZmYuc1 complementary DNA and genomic clones revealed many changes specific to the mutant, including a 2-bp insertion that generated a premature stop codon and a truncated YUC1 protein of 212 amino acids, compared with the 400 amino acids in the De18. The putative, approximately 1.5-kb, Yuc1 promoter region also showed many rearrangements, including a 151-bp deletion in the mutant. Our concurrent high-density mapping and annotation studies of chromosome 10, contig 395, showed that the De18 locus was tightly linked to the gene ZmYuc1. Collectively, the data suggest that the molecular changes in the ZmYuc1 gene encoding the YUC1 protein are the causal basis of impairment in a critical step in IAA biosynthesis, essential for normal endosperm development in maize.

117 citations


Journal ArticleDOI
Fuling Kong1, Jie Wang1, Lin Cheng1, Songyu Liu1, Jian Wu1, Zhen Peng1, Gang Lu1 
10 May 2012-Gene
TL;DR: Estimation of putative SlMAPK genes from tomato genome and compared them with those from Arabidopsis provided an insight into the evolution of the gene family and a useful reference for further functional analysis of MAPK family genes in tomato.

99 citations


Journal ArticleDOI
TL;DR: The number of known imprinted genes in humans is increased by about 10% using a high-throughput strategy by diverting the classical use of genotyping microarrays to compare the genotypes of mRNA/cDNA vs. genomic DNA to identify new genes presenting monoallelic expression, starting from human placental material.
Abstract: Genomic imprinting characterizes genes with a monoallelic expression, which is dependent on the parental origin of each allele. Approximately 150 imprinted genes are known to date, in humans and mice but, though computational searches have tried to extract intrinsic characteristics of these genes to identify new ones, the existing list is probably far from being comprehensive. We used a high-throughput strategy by diverting the classical use of genotyping microarrays to compare the genotypes of mRNA/cDNA vs. genomic DNA to identify new genes presenting monoallelic expression, starting from human placental material. After filtering of data, we obtained a list of 1,082 putative candidate monoallelic SNPs located in more than one hundred candidate genes. Among these, we found known imprinted genes, such as IPW, GRB10, INPP5F and ZNF597, which contribute to validate the approach. We also explored some likely candidates of our list and identified seven new imprinted genes, including ZFAT, ZFAT-AS1, GLIS3, NTM, MAGI2, ZC3H12Cand LIN28B, four of which encode zinc finger transcription factors. They are, however, not imprinted in the mouse placenta, except for Magi2. We analyzed in more details the ZFAT gene, which is paternally expressed in the placenta (as ZFAT-AS1, a non-coding antisense RNA) but biallelic in other tissues. The ZFAT protein is expressed in endothelial cells, as well as in syncytiotrophoblasts. The expression of this gene is, moreover, downregulated in placentas from complicated pregnancies. With this work we increase by about 10% the number of known imprinted genes in humans.

98 citations


Journal ArticleDOI
TL;DR: The in vitro enzyme activity assay by high performance liquid chromatography indicated that recombinant GbFLS protein could catalyze the formation of dihydrokaempferol to ka Kempferol and the conversion of ka Hempferol from naringenin, suggesting that GbFlS is a bifunctional enzyme within the flavonol biosynthetic pathway.
Abstract: Flavonols are produced by the desaturation of dihydroflavanols, which is catalyzed by flavonol synthase (FLS). FLS belongs to the 2-oxoglutarate iron-dependent oxygenase family. The full-length cDNA and genomic DNA sequences of the FLS gene (designated as GbFLS) were isolated from Ginkgo biloba. The full-length cDNA of GbFLS contained a 1023-bp open reading frame encoding a 340-amino-acid protein. The GbFLS genomic DNA had three exons and two introns. The deduced GbFLS protein showed high identities with other plant FLSs. The conserved amino acids (H–X–D) ligating ferrous iron and residues (R–X–S) participating in 2-oxoglutarate binding were found in GbFLS at similar positions like other FLSs. GbFLS was found to be expressed in all tested tissues including roots, stems, leaves, and fruits. Expression profiling analyses revealed that GbFLS expression was induced by all of the six tested abiotic stresses, namely, UV-B, abscisic acid, cold, sucrose, salicylic acid, and ethephon, consistent with the in silico analysis results of the promoter region. The recombinant protein was successfully expressed in the E. coli strain BL21 (DE3) with a pET-28a vector. The in vitro enzyme activity assay by high performance liquid chromatography indicated that recombinant GbFLS protein could catalyze the formation of dihydrokaempferol to kaempferol and the conversion of kaempferol from naringenin, suggesting that GbFLS is a bifunctional enzyme within the flavonol biosynthetic pathway.

97 citations


Journal ArticleDOI
07 Mar 2012-PLOS ONE
TL;DR: It is demonstrated that, in contrast to HCoV-229E, SARS-CoV is not able to mediate efficient heterologous gene expression in human dendritic cells (hDCs).
Abstract: Severe acute respiratory syndrome (SARS) is a zoonotic disease caused by SARS-related coronavirus (SARS-CoV) that emerged in 2002 to become a global health concern. Although the original outbreak was controlled by classical public health measures, there is a real risk that another SARS-CoV could re-emerge from its natural reservoir, either in its original form or as a more virulent or pathogenic strain; in which case, the virus would be difficult to control in the absence of any effective antiviral drugs or vaccines. Using the well-studied SARS-CoV isolate HKU-39849, we developed a vaccinia virus-based SARS-CoV reverse genetic system that is both robust and biosafe. The SARS-CoV genome was cloned in separate vaccinia virus vectors, (vSARS-CoV-5prime and vSARS-CoV-3prime) as two cDNAs that were subsequently ligated to create a genome-length SARS-CoV cDNA template for in vitro transcription of SARS-CoV infectious RNA transcripts. Transfection of the RNA transcripts into permissive cells led to the recovery of infectious virus (recSARS-CoV). Characterization of the plaques produced by recSARS-CoV showed that they were similar in size to the parental SARS-CoV isolate HKU-39849 but smaller than the SARS-CoV isolate Frankfurt-1. Comparative analysis of replication kinetics showed that the kinetics of recSARS-CoV replication are similar to those of SARS-CoV Frankfurt-1, although the titers of virus released into the culture supernatant are approximately 10-fold less. The reverse genetic system was finally used to generate a recSARS-CoV reporter virus expressing Renilla luciferase in order to facilitate the analysis of SARS-CoV gene expression in human dendritic cells (hDCs). In parallel, a Renilla luciferase gene was also inserted into the genome of human coronavirus 229E (HCoV-229E). Using this approach, we demonstrate that, in contrast to HCoV-229E, SARS-CoV is not able to mediate efficient heterologous gene expression in hDCs.

86 citations


Journal ArticleDOI
TL;DR: The human population is characterized by the presence of functionally inactive hAOX1 allelic variants as well as variants encoding enzymes with different catalytic activities, which should be considered for the design of future drugs.
Abstract: Aldehyde oxidase (AO) is a complex molybdo-flavoprotein that belongs to the xanthine oxidase family. AO is active as a homodimer, and each 150-kDa monomer binds two distinct [2Fe2S] clusters, FAD, and the molybdenum cofactor. AO has an important role in the metabolism of drugs based on its broad substrate specificity oxidizing aromatic aza-heterocycles, for example, N1-methylnicotinamide and N-methylphthalazinium, or aldehydes, such as benzaldehyde, retinal, and vanillin. Sequencing the 35 coding exons of the human AOX1 gene in a sample of 180 Italian individuals led to the identification of relatively frequent, synonymous, missense and nonsense single-nucleotide polymorphisms (SNPs). Human aldehyde oxidase (hAOX1) was purified after heterologous expression in Escherichia coli. The recombinant protein was obtained with a purity of 95% and a yield of 50 μg/l E. coli culture. Site-directed mutagenesis of the hAOX1 cDNA allowed the purification of protein variants bearing the amino acid changes R802C, R921H, N1135S, and H1297R, which correspond to some of the identified SNPs. The hAOX1 variants were purified and compared with the wild-type protein relative to activity, oligomerization state, and metal content. Our data show that the mutation of each amino acid residue has a variable impact on the ability of hAOX1 to metabolize selected substrates. Thus, the human population is characterized by the presence of functionally inactive hAOX1 allelic variants as well as variants encoding enzymes with different catalytic activities. Our results indicate that the presence of these allelic variants should be considered for the design of future drugs.

Journal ArticleDOI
12 Oct 2012-PLOS ONE
TL;DR: The results suggested that LvMyD88 may play a role in antibacterial and antiviral response in L. vannamei.
Abstract: Myeloid differentiation factor 88 (MyD88) is a universal and essential signaling protein in Toll-like receptor/interleukin-1 receptor-induced activation of nuclear factor-kappa B. In this study, two MyD88 protein variants (LvMyD88 and LvMyD88-1) were identified in Litopenaeus vannamei. The LvMyD88 cDNA is 1,848 bp in length and contains an open reading frame (ORF) of 1,428 bp, whereas the LvMyD88-1 cDNA is 1,719 bp in length and has an ORF of 1,299 bp. Both variants encode proteins with death and Toll/interleukin-1 receptor domains and share 91% sequence identity. In healthy L. vannamei, the LvMyD88 genes were highly expressed in hemocytes but at a low level in the hepatopancreas. The LvMyD88s expression was induced in hemocytes after challenge with lipopolysaccharide, CpG-ODN2006, Vibrio parahaemolyticus, Staphyloccocus aureus, and white spot syndrome virus, but not by poly I∶C. Overexpression of LvMyD88 and LvMyD88-1 in Drosophila Schneider 2 cells led to activation of antimicrobial peptide genes and wsv069 (ie1), wsv303, and wsv371. These results suggested that LvMyD88 may play a role in antibacterial and antiviral response in L. vannamei. To our knowledge, this is the first report on MyD88 in shrimp and a variant of MyD88 gene in invertebrates.

Journal ArticleDOI
TL;DR: A novel sugarcane Sc-Dir gene, DIRd subfamily, which is highly stalk-specific expression and involved in the response to artificial stresses of drought, salts, and oxidatives is identified.
Abstract: Dirigent and dirigent-like family proteins contain a number of proteins involved in lignification or in the response to pathogen infection and abiotic stress in plants. In the present study, a full-length cDNA sequence of a dirigent-like gene designated ScDir (GenBank Accession Number JQ622282) was obtained from sugarcane based on the stem full-length cDNA library. The ScDir gene was 819-bp long, including a 564-bp ORF encoding 187 amino acid residues. The protein N-terminus contained signal peptides at amino acid residues of 1–25 and transmembrane regions at 7–26 aa. A his-tagged ScDir protein with an estimated molecular mass of 27.4 kDa was expressed in Escherichia coli system. The expressed ScDir protein had increased the host cell’s tolerance to PEG and NaCl. When an endogenous GAPDH gene was used as internal control, results from real-time qPCR demonstrated that the ScDir mRNA amount in sugarcane stems was significantly higher than that in the roots, leaves and buds by 18.64 ± 0.48, 25,635.16 ± 2,966.03 and 721.50 ± 8.17-fold, respectively. The ScDir transcript levels in sugarcane seedling increased under H2O2, PEG or NaCl stress. The expression level of ScDir was significantly upregulated under PEG stress, and the highest level was observed at 12 h after stress. Thus, both the ScDir-hosted cell performance and the enhanced expressions in sugarcane imply that the ScDir gene is involved in the response to abiotic stresses of drought, salts and oxidation. The transcription of the ScDir gene is highly stem-specific, as revealed by real-time qPCR. Key message A novel sugarcane Sc-Dir gene, DIRd subfamily, which is highly stalk-specific expression and involved in the response to artificial stresses of drought, salts, and oxidatives.

Journal ArticleDOI
19 Oct 2012-PLOS ONE
TL;DR: In this article, gene expression in the spleens of naive chickens and those intravenously infected with S. Enteritidis with or without previous oral vaccination was determined by 454 pyrosequencing of splenic mRNA/cDNA.
Abstract: In this study we were interested in identification of new markers of chicken response to Salmonella Enteritidis infection. To reach this aim, gene expression in the spleens of naive chickens and those intravenously infected with S. Enteritidis with or without previous oral vaccination was determined by 454 pyrosequencing of splenic mRNA/cDNA. Forty genes with increased expression at the level of transcription were identified. The most inducible genes encoded avidin (AVD), extracellular fatty acid binding protein (EXFABP), immune responsive gene 1 (IRG1), chemokine ah221 (AH221), trappin-6-like protein (TRAP6) and serum amyloid A (SAA). Using cDNA from sorted splenic B-lymphocytes, macrophages, CD4, CD8 and γδ T-lymphocytes, we found that the above mentioned genes were preferentially expressed in macrophages. AVD, EXFABP, IRG1, AH221, TRAP6 and SAA were induced also in the cecum of chickens orally infected with S. Enteritidis on day 1 of life or day 42 of life. Unusual results were obtained for the immunoglobulin encoding transcripts. Prior to the infection, transcripts coding for the constant parts of IgM, IgY, IgA and Ig light chain were detected in B-lymphocytes. However, after the infection, immunoglobulin encoding transcripts were expressed also by T-lymphocytes and macrophages. Expression of AVD, EXFABP, IRG1, AH221, TRAP6, SAA and all immunoglobulin genes can be therefore used for the characterization of the course of S. Enteritidis infection in chickens.

Journal ArticleDOI
Rong Wen1, Fuhua Li1, Yusu Xie1, Shihao Li1, Jianhai Xiang1 
TL;DR: The cell apoptosis susceptibility (CAS) gene is a homolog of the yeast chromosome segregation (CSE1) gene, which functions in cell proliferation and apoptosis, which suggested that FcCAS might function as a nuclear protein.
Abstract: The cell apoptosis susceptibility (CAS) gene is a homolog of the yeast chromosome segregation (CSE1) gene, which functions in cell proliferation and apoptosis. In the present study, a homolog of CAS was cloned from Chinese shrimp Fenneropenaeus chinensis (FcCAS). The full-length FcCAS cDNA is 3534 bp and contains an open reading frame encoding 968 amino acids. The predicted tertiary FcCAS structure is highly similar to that of CSE1 from the yeast Saccharomyces cerevisiae. RT-PCR analysis showed that the FcCAS gene is expressed mainly in testis, ovary, stomach, lymphoid organs, gills, and hemocytes. RNA in situ hybridization showed that FcCAS transcripts were distributed mainly in the cytoplasm of oocytes. Western blot analysis showed that FcCAS could be detected only in testis and ovary, and its expression levels differed at different developmental stages of ovaries. Immunohistochemical analysis showed that FcCAS existed in both the cytoplasm and the nucleus, which suggested that FcCAS might function as a nuclear protein. No transcript was detected in the abnormally developed ovaries of triploid shrimp. Therefore, we inferred that the FcCAS gene might be one of the key genes that is closely related to ovary development in shrimp.

Journal ArticleDOI
TL;DR: Combined biochemical and synergistic data indicated that target-site insensitivity is the major resistance component of spinosad, and the demonstration of truncated transcripts causing resistance was outlined, the mechanism responsible for generating truncation transcripts remains unknown.

Journal ArticleDOI
15 Jun 2012-PLOS ONE
TL;DR: DYSF gene transfer leads to the production of full length transcript and protein and is provided proof of principle that AAV5 mediated delivery of dysferlin is a highly promising strategy for treatment of Dysferlinopathies and has far-reaching implications for the therapeutic delivery of other large genes.
Abstract: The dysferlinopathies comprise a group of untreatable muscle disorders including limb girdle muscular dystrophy type 2B, Miyoshi myopathy, distal anterior compartment syndrome, and rigid spine syndrome. As with other forms of muscular dystrophy, adeno-associated virus (AAV) gene transfer is a particularly auspicious treatment strategy, however the size of the DYSF cDNA (6.5 kb) negates packaging into traditional AAV serotypes known to express well in muscle (i.e. rAAV1, 2, 6, 8, 9). Potential advantages of a full cDNA versus a mini-gene include: maintaining structural-functional protein domains, evading protein misfolding, and avoiding novel epitopes that could be immunogenic. AAV5 has demonstrated unique plasticity with regards to packaging capacity and recombination of virions containing homologous regions of cDNA inserts has been implicated in the generation of full-length transcripts. Herein we show for the first time in vivo that homologous recombination following AAV5.DYSF gene transfer leads to the production of full length transcript and protein. Moreover, gene transfer of full-length dysferlin protein in dysferlin deficient mice resulted in expression levels sufficient to correct functional deficits in the diaphragm and importantly in skeletal muscle membrane repair. Intravascular regional gene transfer through the femoral artery produced high levels of transduction and enabled targeting of specific muscle groups affected by the dysferlinopathies setting the stage for potential translation to clinical trials. We provide proof of principle that AAV5 mediated delivery of dysferlin is a highly promising strategy for treatment of dysferlinopathies and has far-reaching implications for the therapeutic delivery of other large genes.

Journal ArticleDOI
TL;DR: This study provided the direct evidence that extracellular proteases secreted by the antagonist A. pullulans PL5 played a role in the biocontrol activities against some postharvest pathogens of apple and peach.

Journal ArticleDOI
18 May 2012-PLOS ONE
TL;DR: It is demonstrated that MoHrip1 triggers defense responses in rice and could be used for controlling rice blast disease.
Abstract: Background Magnaporthe oryzae, the rice blast fungus, might secrete certain proteins related to plant-fungal pathogen interactions. Methodology/Principal Findings In this study, we report the purification, characterization, and gene cloning of a novel hypersensitive response-inducing protein elicitor (MoHrip1) secreted by M. oryzae. The protein fraction was purified and identified by de novo sequencing, and the sequence matched the genomic sequence of a putative protein from M. oryzae strain 70-15 (GenBank accession No. XP_366602.1). The elicitor-encoding gene mohrip1 was isolated; it consisted of a 429 bp cDNA, which encodes a polypeptide of 142 amino acids with a molecular weight of 14.322 kDa and a pI of 4.53. The deduced protein, MoHrip1, was expressed in E. coli. And the expression protein collected from bacterium also forms necrotic lesions in tobacco. MoHrip1 could induce the early events of the defense response, including hydrogen peroxide production, callose deposition, and alkalization of the extracellular medium, in tobacco. Moreover, MoHrip1-treated rice seedlings possessed significantly enhanced systemic resistance to M. oryzae compared to the control seedlings. The real-time PCR results indicated that the expression of some pathogenesis-related genes and genes involved in signal transduction could also be induced by MoHrip1. Conclusion/Significance The results demonstrate that MoHrip1 triggers defense responses in rice and could be used for controlling rice blast disease.

Book ChapterDOI
TL;DR: The UV cross-linking and analysis of cDNA (CRAC) method, and its application to the identification of binding sites of RNA-interacting helicases, are given.
Abstract: Many RNA helicases have been implicated in one or more pathways of RNA metabolism, but only in a very few cases have their target sites on the RNA been identified. Here, we give a detailed description of the UV cross-linking and analysis of cDNA (CRAC) method, and its application to the identification of binding sites of RNA-interacting helicases. CRAC makes use of a bipartite tag on the protein of interest and includes a purification step under highly denaturing conditions. This is particularly important for the accurate mapping of binding sites within large RNA-protein complexes--such as spliceosomes or preribosomes. Partial RNase digestion leaves a footprint of the protein covering the interaction site, and the UV cross-linking sites are frequently highlighted by microdeletions in cDNA sequence reads. Deep sequencing of cDNA libraries generated from cross-linked RNA fragments allows a genome-wide analysis of the interactome of RNA-binding proteins. In the case of RNA helicases, this has proven to be an important step toward their functional analysis.

Journal ArticleDOI
15 Apr 2012-Gene
TL;DR: The results indicated that ChHSP70 of the oyster is an inducible protein, and plays an important role in response to the Cu(2+) and malachite green polluted stress, so chhsp70 might be used as a potential molecular biomarker of above pollutants.

Journal ArticleDOI
TL;DR: It is shown that employing optimized ribozyme sequences significantly improves RV rescue and the improved RV reverse genetics system greatly facilitates recovery of strongly attenuated viruses and vectors for biomedical applications.

Journal ArticleDOI
TL;DR: Results suggest that the attacin-like cDNA of S. exigua codes for antimicrobial peptides, and induced Seattacin showed biological activity against several bacteria including Escherichiacoli DH5α, Pseudomonas cichorii, Bacillus subtilis, and Listeria monocytogenes.
Abstract: To isolate antimicrobial-related genes from the beet armyworm, Spodoptera exigua, we performed GeneFishing, a polymerase chain reaction (PCR)-based differential display technique. An attacin-like complementary DNA (cDNA) including a 3′-untranslated region was identified from among 18 over-expressed genes in microbial-infected larvae. The full-length attacin cDNA from S. exigua cDNA (Seattacin) was cloned using rapid amplification of cDNA ends PCR. The attacin-like cDNA transcript was 765 nucleotides in length, and the predicted polypeptide was 254 amino acids in length with a calculated molecular mass of 27.6 kDa and an isoelectric point of 6.44. The protein sequence of the attacin-like cDNA showed high identity to that of Trichoplusia ni (61.2%). The amino acid sequence identity of Seattacin to the orthologous proteins in Bombyx mori, Manduca sexta, Heliothis virescens, Hlicoverpa armigera, Hyphantria cunea, Hyalophora cecropia, and Drosophila melanogaster was 61.2, 46.1, 44.5, 42.2, 39.5, 45.1, and 24.0%, respectively. To examine possible immune functions of the attacin-like cDNA, its expression was investigated by reverse transcriptase PCR analysis after challenging S. exigua with microorganisms. The attacin-like cDNA was expressed at high levels 12 h post-infection, and its expression was slightly induced 4–8 h post-infection compared to control larvae inoculated with sterile water. Furthermore, induced Seattacin showed biological activity against several bacteria including Escherichiacoli DH5α, Pseudomonas cichorii, Bacillus subtilis, and Listeria monocytogenes. These results suggest that the attacin-like cDNA of S. exigua codes for antimicrobial peptides.

Journal ArticleDOI
TL;DR: In this paper, the effect of long-term low salinity stress on gene expression in the hepatopancreas in shrimp was investigated by performing suppression subtractive hybridization (SSH) in juvenile L. vannamei.

Journal ArticleDOI
TL;DR: Hrip1 represents a powerful tool to investigate further the signals and their transduction pathways involved in induced disease resistance in necrotrophic fungi.
Abstract: Here, we report the identification, purification, characterization and gene cloning of a novel hypersensitive response inducing protein secreted by necrotrophic fungus, Alternaria tenuissima, designated as hypersensitive response inducing protein 1 (Hrip1). The protein caused the formation of necrotic lesions that mimic a typical hypersensitive response and apoptosis-related events including DNA laddering. The protein-encoding gene was cloned by rapid amplification of cDNA ends (RACE) method. The sequence analysis revealed that the cDNA is 495 bp in length and the open reading frame (ORF) encodes for a polypeptide of 163 amino acids with theoretical pI of 5.50 and molecular weight of 17 562.5 Da. Hrip1 induced calcium influx, medium alkalinization, activation of salicylic acid-induced protein kinase and several defence-related genes after infiltration in tobacco leaves. Cellular damage, restricted to the infiltrated zone, occurred only several hours later, at a time when expression of defence-related genes was activated. After several days, systemic acquired resistance was also induced. The tobacco plant cells that perceived the Hrip1 generated a cascade of signals acting at local, short, and long distances, and caused the coordinated expression of specific defence responses in a way similar to hypersensitivity to tobacco mosaic virus. Thus, Hrip1 represents a powerful tool to investigate further the signals and their transduction pathways involved in induced disease resistance in necrotrophic fungi.

Journal ArticleDOI
TL;DR: The results indicate that IL-6 in groupers regulates the differentiation of naїve T helper cells into Th2 cells and elicits the production of antibodies.
Abstract: Interleukin 6 (IL-6) is a protein secreted by T cells and macrophages and plays an important role in immune response. IL-6 regulates the proliferation and differentiation of T cells, and elicits immunoglobulin production in B cells. In this study, the cDNA il-6 (gil-6) sequence of the orange spotted grouper (Epinephelus coioides) was obtained. The deduced IL-6 (gIL-6) protein comprised 223 amino acids, the sequence shared approximately 30% similarity with mammalian IL-6, and between 47% and 69% similarity with other available teleost IL-6. The protein comprises the signal peptide, the IL-6 family signature, and conserved amino acid residues found in IL-6 sequences of other teleost. In order to understand the bioactivity and influence of gIL-6 on humoral immune response, recombinant gIL-6 (rgIL-6) synthesized by prokaryotes was injected into orange spotted groupers, and the immune-related gene expression at various times in various organs was observed. Our results revealed that the Th1 specific transcription factor t-bet was down-regulated and Th2 specific transcription factors gata3, and c-maf were up-regulated in immune organs, following IL-6 stimulation. Additionally, higher levels of igm mRNA and translated protein were detected in rgIL-6 stimulated fish. These results indicate that IL-6 in groupers regulates the differentiation of naїve T helper cells into Th2 cells and elicits the production of antibodies.

Journal ArticleDOI
19 Jul 2012-PLOS ONE
TL;DR: Quantitative real-time PCR analysis revealed that EtAMA1 was expressed at higher levels in sporozoites than in the other developmental stages (unsporulated oocysts, sporulated oocytes and second-generation merozoites), and immunofluorescence analysis and immunohistochemistry analysis showed it might play an important role in sporzoite invasion and development.
Abstract: Apical membrane antigen-1 (AMA1) is a micronemal protein of apicomplexan parasites that appears to be essential during the invasion of host cells. In this study, a full-length cDNA of AMA1 was identified from Eimeria tenella (Et) using expressed sequence tag and the rapid amplification of cDNA ends technique. EtAMA1 had an open reading frame of 1608 bp encoding a protein of 535 amino acids. Quantitative real-time PCR analysis revealed that EtAMA1 was expressed at higher levels in sporozoites than in the other developmental stages (unsporulated oocysts, sporulated oocysts and second-generation merozoites). The ectodomain sequence was expressed as recombinant EtAMA1 (rEtAMA1) and rabbit polyclonal antibodies raised against the rEtAMA1 recognized a 58-kDa native parasite protein by Western Blotting and had a potent inhibitory effect on parasite invasion, decreasing it by approximately 70%. Immunofluorescence analysis and immunohistochemistry analysis showed EtAMA1 might play an important role in sporozoite invasion and development.

Journal ArticleDOI
TL;DR: The expression profile of ESTs in L. x intermedia inflorescence indicated that the production of 1,8 cineole in Lavandula is most likely controlled through transcriptional regulation of LiCINS, suggesting that LiC INS was most likely inherited from L. latifolia.
Abstract: Several members of the genus Lavandula produce valuable essential oils (EOs) that are primarily constituted of the low molecular weight isoprenoids, particularly monoterpenes. We isolated over 8,000 ESTs from the glandular trichomes of L. x intermedia flowers (where bulk of the EO is synthesized) to facilitate the discovery of genes that control the biosynthesis of EO constituents. The expression profile of these ESTs in L. x intermedia and its parents L. angustifolia and L. latifolia was established using microarrays. The resulting data highlighted a differentially expressed, previously uncharacterized cDNA with strong homology to known 1,8-cineole synthase (CINS) genes. The ORF, excluding the transit peptide, of this cDNA was expressed in E. coli, purified by Ni–NTA agarose affinity chromatography and functionally characterized in vitro. The ca. 63 kDa bacterially produced recombinant protein, designated L. x intermedia CINS (LiCINS), converted geranyl diphosphate (the linear monoterpene precursor) primarily to 1,8-cineole with Km and kcat values of 5.75 μM and 8.8 × 10−3 s−1, respectively. The genomic DNA of CINS in the studied Lavandula species had identical exon–intron architecture and coding sequences, except for a single polymorphic nucleotide in the L. angustifolia ortholog which did not alter protein function. Additional nucleotide variations restricted to L. angustifolia introns were also observed, suggesting that LiCINS was most likely inherited from L. latifolia. The LiCINS mRNA levels paralleled the 1,8-cineole content in mature flowers of the three lavender species, and in developmental stages of L. x intermedia inflorescence indicating that the production of 1,8 cineole in Lavandula is most likely controlled through transcriptional regulation of LiCINS.

Journal ArticleDOI
TL;DR: T-DNA insertions in the genes represented by some cDNAs revealed five novel Arabidopsis proteins important for Agrobacterium-mediated plant transformation and were used to confirm VirE2-interacting proteins in orchid (Phalaenopsis amabilis) flowers.
Abstract: Screening cDNA libraries for genes encoding proteins that interact with a bait protein is usually performed in yeast However, subcellular compartmentation and protein modification may differ in yeast and plant cells, resulting in misidentification of protein partners We used bimolecular fluorescence complementation technology to screen a plant cDNA library against a bait protein directly in plants As proof of concept, we used the N-terminal fragment of yellow fluorescent protein– or nVenus-tagged Agrobacterium tumefaciens VirE2 and VirD2 proteins and the C-terminal extension (CTE) domain of Arabidopsis thaliana telomerase reverse transcriptase as baits to screen an Arabidopsis cDNA library encoding proteins tagged with the C-terminal fragment of yellow fluorescent protein A library of colonies representing ∼2 × 105 cDNAs was arrayed in 384-well plates DNA was isolated from pools of 10 plates, individual plates, and individual rows and columns of the plates Sequential screening of subsets of cDNAs in Arabidopsis leaf or tobacco (Nicotiana tabacum) Bright Yellow-2 protoplasts identified single cDNA clones encoding proteins that interact with either, or both, of the Agrobacterium bait proteins, or with CTE T-DNA insertions in the genes represented by some cDNAs revealed five novel Arabidopsis proteins important for Agrobacterium-mediated plant transformation We also used this cDNA library to confirm VirE2-interacting proteins in orchid (Phalaenopsis amabilis) flowers Thus, this technology can be applied to several plant species

Journal ArticleDOI
TL;DR: This study characterized a group of the M- MuLV RT variants (28 novel amino acid positions, 84 point mutants) carrying the individual mutations and generated highly processive and thermostable multiply-mutated M-MuLVRT variants.
Abstract: In vitro synthesis of cDNA is one of the most important techniques in present molecular biology. Faithful synthesis of long cDNA on highly structured RNA templates requires thermostable and processive reverse transcriptases. In a recent attempt to increase the thermostability of the wt Moloney Murine leukemia virus reverse transcriptase (M-MuLV RT), we have employed the compartmentalized ribosome display (CRD) evolution in vitro technique and identified a large set of previously unknown mutations that enabled cDNA synthesis at elevated temperatures. In this study, we have characterized a group of the M-MuLV RT variants (28 novel amino acid positions, 84 point mutants) carrying the individual mutations. The performance of point mutants (thermal inactivation rate, substrate-binding affinity and processivity) correlated remarkably well with the mutation selection frequency in the CRD experiment. By combining the best-performing mutations D200N, L603W, T330P, L139P and E607K, we have generated highly processive and thermostable multiply-mutated M-MuLV RT variants. The processivity of the best-performing multiple mutant increased to 1500 nt (65-fold improvement in comparison to the wt enzyme), and the maximum temperature of the full-length 7.5-kb cDNA synthesis was raised to 62°C (17° higher in comparison with the wt enzyme).