scispace - formally typeset
Search or ask a question
Topic

Complementary DNA

About: Complementary DNA is a research topic. Over the lifetime, 55301 publications have been published within this topic receiving 2752650 citations. The topic is also known as: cDNA & DNA, Complementary.


Papers
More filters
Journal ArticleDOI
TL;DR: A circular permutation assay shows that binding of FREAC proteins to their cognate sites results in bending of the DNA at an angle of 80‐90 degrees, and identifies two subregions within the forkhead domain as responsible for creating differences in DNA binding specificity.
Abstract: The forkhead domain is a monomeric DNA binding motif that defines a rapidly growing family of eukaryotic transcriptional regulators. Genetic and biochemical data suggest a central role in embryonic development for genes encoding forkhead proteins. We have used PCR and low stringency hybridization to isolate clones from human cDNA and genomic libraries that represent seven novel forkhead genes, freac-1 to freac-7. The spatial patterns of expression for the seven freac genes range from specific for a single tissue to nearly ubiquitous. The DNA binding specificities of four of the FREAC proteins were determined by selection of binding sites from random sequence oligonucleotides. The binding sites for all four FREAC proteins share a core sequence, RTAAAYA, but differ in the positions flanking the core. Domain swaps between two FREAC proteins identified two subregions within the forkhead domain as responsible for creating differences in DNA binding specificity. Applying a circular permutation assay, we show that binding of FREAC proteins to their cognate sites results in bending of the DNA at an angle of 80-90 degrees.

423 citations

Journal ArticleDOI
08 Jul 1993-Nature
TL;DR: The Olf-1 protein, expressed exclusively in the olfactory receptor neurons and their precursors, contains a new helix–loop–helix motif and functions as an apparent homodimer.
Abstract: A novel genetic selection in yeast has been used to isolate a complementary DNA for the transcriptional activator, Olf-1, which binds to the regulatory sequences of several olfactory-specific genes. The Olf-1 protein, expressed exclusively in the olfactory receptor neurons and their precursors, contains a new helix–loop–helix motif and functions as an apparent homodimer. Olf-1 may be the first member of a family of related proteins that may direct cellular differentiation in a variety of neuronal tissues.

422 citations

Journal ArticleDOI
TL;DR: Debr branching of glucopolysaccharides is seemingly part of the normal process of starch biosynthesis, and the final degree of branch linkages in starch most likely arises from the combined actions of branching and debranching enzymes.
Abstract: In maize kernels, mutations in the gene sugary1 (su1) result in (1) increased sucrose concentration; (2) decreased concentration of amylopectin, the branched component of starch; and (3) accumulation of the highly branched glucopolysaccharide phytoglycogen. To investigate further the mechanisms of storage carbohydrate synthesis in maize, part of the su1 gene locus and a cDNA copy of the su1 transcript were characterized. Five new su1 mutations were isolated in a Mutator background, and the mutant allele su1-R4582::Mu1 was isolated by transposon tagging. The identity of the cloned element as the su1 gene locus was confirmed by the cosegregation of restriction fragment length polymorphisms in the same or nearby genomic intervals with three additional, independent su1 mutations. Pedigree analysis was also used to confirm the identity of su1. A 2.8-kb mRNA that is homologous to the cloned gene was detected in maize kernels, and a 2.7-kb cDNA clone was isolated based on hybridization to the genomic DNA. Specific portions of the cDNA hybridized with multiple segments of the maize genome, suggesting that su1 is part of a multigene family. The cDNA sequence specified a polypeptide of at least 742 amino acids, which is highly similar in amino acid sequence to bacterial enzymes that hydrolyze alpha-(1-->6) glucosyl linkages of starch. Therefore, debranching of glucopolysaccharides is seemingly part of the normal process of starch biosynthesis, and the final degree of branch linkages in starch most likely arises from the combined actions of branching and debranching enzymes.

421 citations

Journal ArticleDOI
TL;DR: The identification and characterization of a third human glucose transporter-related protein suggests that there is a family of proteins having similar sequences and structures which are involved in nutrient transport by mammalian cells.

421 citations

Journal ArticleDOI
TL;DR: Direct comparison with human factor VIII reveals considerable homology between proteins in amino acid sequence and domain structure: a triplicated A domain and duplicated C domain show approximately equal to 40% identity with the corresponding domains in factor VIII.
Abstract: cDNA clones encoding human factor V have been isolated from an oligo(dT)-primed human fetal liver cDNA library prepared with vector Charon 21A. The cDNA sequence of factor V from three overlapping clones includes a 6672-base-pair (bp) coding region, a 90-bp 5' untranslated region, and a 163-bp 3' untranslated region within which is a poly(A) tail. The deduced amino acid sequence consists of 2224 amino acids inclusive of a 28-amino acid leader peptide. Direct comparison with human factor VIII reveals considerable homology between proteins in amino acid sequence and domain structure: a triplicated A domain and duplicated C domain show approximately equal to 40% identity with the corresponding domains in factor VIII. As in factor VIII, the A domains of factor V share approximately 40% amino acid-sequence homology with the three highly conserved domains in ceruloplasmin. The B domain of factor V contains 35 tandem and approximately 9 additional semiconserved repeats of nine amino acids of the form Asp-Leu-Ser-Gln-Thr-Thr/Asn-Leu-Ser-Pro and 2 additional semiconserved repeats of 17 amino acids. Factor V contains 37 potential N-linked glycosylation sites, 25 of which are in the B domain, and a total of 19 cysteine residues.

421 citations


Network Information
Related Topics (5)
Gene expression
113.3K papers, 5.5M citations
94% related
Gene
211.7K papers, 10.3M citations
94% related
Regulation of gene expression
85.4K papers, 5.8M citations
91% related
RNA
111.6K papers, 5.4M citations
91% related
Transcription factor
82.8K papers, 5.4M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023197
2022422
2021178
2020241
2019312
2018349