scispace - formally typeset
Search or ask a question
Topic

Complementary DNA

About: Complementary DNA is a research topic. Over the lifetime, 55301 publications have been published within this topic receiving 2752650 citations. The topic is also known as: cDNA & DNA, Complementary.


Papers
More filters
Journal ArticleDOI
TL;DR: The construction of a full-length cDNA is reported for the human MDR1 gene and it is shown that this reconstructed cDNA, when inserted into a retroviral expression vector containing the long terminal repeats of Moloney leukemia virus or Harvey sarcoma virus, functions to confer the complete multidrug-resistance phenotype.
Abstract: Intrinsic and acquired multidrug resistance (MDR) is an important problem in cancer therapy. MDR in human KB carcinoma cells selected for resistance to colchicine, vinblastine, or doxorubicin (former generic name adriamycin) is associated with overexpression of the "MDR1" gene, which encodes P-glycoprotein. We previously have isolated an overlapping set of cDNA clones for the human MDR1 gene from multidrug-resistant KB cells. Here we report the construction of a full-length cDNA for the human MDR1 gene and show that this reconstructed cDNA, when inserted into a retroviral expression vector containing the long terminal repeats of Moloney leukemia virus or Harvey sarcoma virus, functions in mouse NIH 3T3 and human KB cells to confer the complete multidrug-resistance phenotype. These results suggest that the human MDR1 gene may be used as a positive selectable marker to introduce genes into human cells and to transform human cells to multidrug resistance without introducing nonhuman antigens.

1,074 citations

Journal ArticleDOI
10 Aug 1990-Cell
TL;DR: Evidence suggests that NF1 encodes a cytoplasmic GAP-like protein that may be involved in the control of cell growth by interacting with proteins such as the RAS gene product.

1,073 citations

Journal ArticleDOI
TL;DR: A nomenclature is proposed which avoids categorization by organ of origin and indicates that the conserved sequences correspond to transmembrane and extracellular regions of the junctional molecules, while the nonconserved sequences correspondto cytoplasmic regions.
Abstract: Northern blot analysis of rat heart mRNA probed with a cDNA coding for the principal polypeptide of rat liver gap junctions demonstrated a 3.0-kb band. This band was observed only after hybridization and washing using low stringency conditions; high stringency conditions abolished the hybridization. A rat heart cDNA library was screened with the same cDNA probe under the permissive hybridization conditions, and a single positive clone identified and purified. The clone contained a 220-bp insert, which showed 55% homology to the original cDNA probe near the 5' end. The 220-bp cDNA was used to rescreen a heart cDNA library under high stringency conditions, and three additional cDNAs that together spanned 2,768 bp were isolated. This composite cDNA contained a single 1,146-bp open reading frame coding for a predicted polypeptide of 382 amino acids with a molecular mass of 43,036 D. Northern analysis of various rat tissues using this heart cDNA as probe showed hybridization to 3.0-kb bands in RNA isolated from heart, ovary, uterus, kidney, and lens epithelium. Comparisons of the predicted amino acid sequences for the two gap junction proteins isolated from heart and liver showed two regions of high homology (58 and 42%), and other regions of little or no homology. A model is presented which indicates that the conserved sequences correspond to transmembrane and extracellular regions of the junctional molecules, while the nonconserved sequences correspond to cytoplasmic regions. Since it has been shown previously that the original cDNA isolated from liver recognizes mRNAs in stomach, kidney, and brain, and it is shown here that the cDNA isolated from heart recognizes mRNAs in ovary, uterus, lens epithelium, and kidney, a nomenclature is proposed which avoids categorization by organ of origin. In this nomenclature, the homologous proteins in gap junctions would be called connexins, each distinguished by its predicted molecular mass in kilodaltons. The gap junction protein isolated from liver would then be called connexin32; from heart, connexin43.

1,071 citations

Journal ArticleDOI
01 Feb 1996-Nature
TL;DR: To the authors' knowledge, this is the first iodide-transporting molecule to have its cDNA cloned, providing a missing link in the thyroid hormone biosynthetic pathway.
Abstract: Iodide (I-) is an essential constituent of the thyroid hormones T3 and T4, and is accumulated by the thyroid. The transport of iodide, the first step in thyroid hormogenesis, is catalysed by the Na+/I- symporter, an intrinsic membrane protein that is crucial for the evaluation, diagnosis and treatment of thyroid disorders. Although several other important thyroid proteins involved in hormogenesis have been characterized, the Na+/I- symporter has not. Here we report the isolation of a complementary DNA clone that encodes this symporter, as a result of functional screening of a cDNA library from a rat thyroid-derived cell line (FRTL-5) in Xenopus laevis oocytes. Oocyte microinjection of an RNA transcript made in vitro from this cDNA clone elicited a more than 700-fold increase in perchlorate-sensitive Na+/I- symport activity over background. To our knowledge, this is the first iodide-transporting molecule to have its cDNA cloned, providing a missing link in the thyroid hormone biosynthetic pathway.

1,069 citations

Journal ArticleDOI
07 Dec 1989-Nature
TL;DR: A complementary DNA clone is isolated by screening a rat brain cDNA library for expression of kainate-gated ion channels in Xenopus oocytes which on expression in oocytes forms a functional ion channel possessing the electrophysiological and pharmacological properties of the kainates subtype of the glutamate receptor family in the mammalian central nervous system.
Abstract: We have isolated a complementary DNA clone by screening a rat brain cDNA library for expression of kainate-gated ion channels in Xenopus oocytes. The cDNA encodes a single protein of relative molecular mass (Mr) 99,800 which on expression in oocytes forms a functional ion channel possessing the electrophysiological and pharmacological properties of the kainate subtype of the glutamate receptor family in the mammalian central nervous system.

1,062 citations


Network Information
Related Topics (5)
Gene expression
113.3K papers, 5.5M citations
94% related
Gene
211.7K papers, 10.3M citations
94% related
Regulation of gene expression
85.4K papers, 5.8M citations
91% related
RNA
111.6K papers, 5.4M citations
91% related
Transcription factor
82.8K papers, 5.4M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023197
2022422
2021178
2020241
2019312
2018349