scispace - formally typeset
Search or ask a question
Topic

Complementary DNA

About: Complementary DNA is a research topic. Over the lifetime, 55301 publications have been published within this topic receiving 2752650 citations. The topic is also known as: cDNA & DNA, Complementary.


Papers
More filters
Journal ArticleDOI
15 Feb 1992-Gene
TL;DR: The cloning and sequencing of both cDNA and genomic clones of GFP from the cnidarian, Aequorea victoria, show three different restriction enzyme patterns which suggests that at least three different genes are present in the A. victoria population.

2,365 citations

Journal ArticleDOI
01 Mar 1986-Nature
TL;DR: Cloned and sequenced the complete complementary DNA of the oestrogen receptor (ER) present in the breast cancer cell line MCF-7 and found extensive homology between the ER and the erb-A protein of the oncogenic avian erythroblastosis virus.
Abstract: We have cloned and sequenced the complete complementary DNA of the oestrogen receptor (ER) present in the breast cancer cell line MCF-7. The expression of the ER cDNA in HeLa cells produces a protein that has the same relative molecular mass and binds oestradiol with the same affinity as the MCF-7 ER. There is extensive homology between the ER and the erb-A protein of the oncogenic avian erythroblastosis virus.

2,324 citations

Journal ArticleDOI
TL;DR: Previously unrecognized alterations in the expression of specific genes provide leads for further investigation of the genetic basis of the tumorigenic phenotype of these cells.
Abstract: The development and progression of cancer and the experimental reversal of tumorigenicity are accompanied by complex changes in patterns of gene expression. Microarrays of cDNA provide a powerful tool for studying these complex phenomena. The tumorigenic properties of a human melanoma cell line, UACC-903, can be suppressed by introduction of a normal human chromosome 6, resulting in a reduction of growth rate, restoration of contact inhibition, and suppression of both soft agar clonogenicity and tumorigenicity in nude mice. We used a high density microarray of 1,161 DNA elements to search for differences in gene expression associated with tumour suppression in this system. Fluorescent probes for hybridization were derived from two sources of cellular mRNA [UACC-903 and UACC-903(+6)] which were labelled with different fluors to provide a direct and internally controlled comparison of the mRNA levels corresponding to each arrayed gene. The fluorescence signals representing hybridization to each arrayed gene were analysed to determine the relative abundance in the two samples of mRNAs corresponding to each gene. Previously unrecognized alterations in the expression of specific genes provide leads for further investigation of the genetic basis of the tumorigenic phenotype of these cells.

2,242 citations

Journal ArticleDOI
06 Apr 1990-Cell
TL;DR: It is proposed that HLH proteins lacking a basic region may negatively regulate other HLHprotein through the formation of nonfunctional heterodimeric complexes.

2,203 citations

Journal ArticleDOI
Robert L. Strausberg, Elise A. Feingold1, Lynette H. Grouse1, Jeffery G. Derge2, Richard D. Klausner1, Francis S. Collins1, Lukas Wagner1, Carolyn M. Shenmen1, Gregory D. Schuler1, Stephen F. Altschul1, Barry R. Zeeberg1, Kenneth H. Buetow1, Carl F. Schaefer1, Narayan K. Bhat1, Ralph F. Hopkins1, Heather Jordan1, Troy Moore3, Steve I Max3, Jun Wang3, Florence Hsieh, Luda Diatchenko, Kate Marusina, Andrew A Farmer, Gerald M. Rubin4, Ling Hong4, Mark Stapleton4, M. Bento Soares5, Maria de Fatima Bonaldo5, Thomas L. Casavant5, Todd E. Scheetz5, Michael J. Brownstein1, Ted B. Usdin1, Shiraki Toshiyuki, Piero Carninci, Christa Prange6, Sam S Raha7, Naomi A Loquellano7, Garrick J Peters7, Rick D Abramson7, Sara J Mullahy7, Stephanie Bosak, Paul J. McEwan, Kevin McKernan, Joel A. Malek, Preethi H. Gunaratne8, Stephen Richards8, Kim C. Worley8, Sarah Hale8, Angela M. Garcia8, Stephen W. Hulyk8, Debbie K Villalon8, Donna M. Muzny8, Erica Sodergren8, Xiuhua Lu8, Richard A. Gibbs8, Jessica Fahey9, Erin Helton9, Mark Ketteman9, Anuradha Madan9, Stephanie Rodrigues9, Amy Sanchez9, Michelle Whiting9, Anup Madan9, Alice C. Young1, Yuriy O. Shevchenko1, Gerard G. Bouffard1, Robert W. Blakesley1, Jeffrey W. Touchman1, Eric D. Green1, Mark Dickson10, Alex Rodriguez10, Jane Grimwood10, Jeremy Schmutz10, Richard M. Myers10, Yaron S.N. Butterfield11, Martin Krzywinski11, Ursula Skalska11, Duane E. Smailus11, Angelique Schnerch11, Jacqueline E. Schein11, Steven J.M. Jones11, Marco A. Marra11 
TL;DR: The National Institutes of Health Mammalian Gene Collection (MGC) Program is a multiinstitutional effort to identify and sequence a cDNA clone containing a complete ORF for each human and mouse gene.
Abstract: The National Institutes of Health Mammalian Gene Collection (MGC) Program is a multiinstitutional effort to identify and sequence a cDNA clone containing a complete ORF for each human and mouse gene. ESTs were generated from libraries enriched for full-length cDNAs and analyzed to identify candidate full-ORF clones, which then were sequenced to high accuracy. The MGC has currently sequenced and verified the full ORF for a nonredundant set of >9,000 human and >6,000 mouse genes. Candidate full-ORF clones for an additional 7,800 human and 3,500 mouse genes also have been identified. All MGC sequences and clones are available without restriction through public databases and clone distribution networks (see http:mgc.nci.nih.gov).

2,184 citations


Network Information
Related Topics (5)
Gene expression
113.3K papers, 5.5M citations
94% related
Gene
211.7K papers, 10.3M citations
94% related
Regulation of gene expression
85.4K papers, 5.8M citations
91% related
RNA
111.6K papers, 5.4M citations
91% related
Transcription factor
82.8K papers, 5.4M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023197
2022422
2021178
2020241
2019312
2018349